532 research outputs found
Neutrino physics with multi-ton scale liquid xenon detectors
We study the sensitivity of large-scale xenon detectors to low-energy solar
neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double
beta decay. As a concrete example, we consider the xenon part of the proposed
DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform
detailed Monte Carlo simulations of the expected backgrounds, considering
realistic energy resolutions and thresholds in the detector. In a low-energy
window of 2-30 keV, where the sensitivity to solar pp and Be-neutrinos is
highest, an integrated pp-neutrino rate of 5900 events can be reached in a
fiducial mass of 14 tons of natural xenon, after 5 years of data. The
pp-neutrino flux could thus be measured with a statistical uncertainty around
1%, reaching the precision of solar model predictions. These low-energy solar
neutrinos will be the limiting background to the dark matter search channel for
WIMP-nucleon cross sections below 210 cm and WIMP
masses around 50 GeVc, for an assumed 99.5% rejection of
electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils
from coherent scattering of solar neutrinos will limit the sensitivity to WIMP
masses below 6 GeVc to cross sections above
410cm. DARWIN could reach a competitive half-life
sensitivity of 5.610 y to the neutrinoless double beta decay of
Xe after 5 years of data, using 6 tons of natural xenon in the central
detector region.Comment: 17 pages, 4 figure
Spatially uniform calibration of a liquid xenon detector at low energies using 83m-Kr
A difficult task with many particle detectors focusing on interactions below
~100 keV is to perform a calibration in the appropriate energy range that
adequately probes all regions of the detector. Because detector response can
vary greatly in various locations within the device, a spatially uniform
calibration is important. We present a new method for calibration of liquid
xenon (LXe) detectors, using the short-lived 83m-Kr. This source has
transitions at 9.4 and 32.1 keV, and as a noble gas like Xe, it disperses
uniformly in all regions of the detector. Even for low source activities, the
existence of the two transitions provides a method of identifying the decays
that is free of background. We find that at decreasing energies, the LXe light
yield increases, while the amount of electric field quenching is diminished.
Additionally, we show that if any long-lived radioactive backgrounds are
introduced by this method, they will present less than 67E-6 events/kg/day in
the next generation of LXe dark matter direct detection searchesComment: 9 pages, 9 figures. Accepted to Review of Scientific Instrument
Scintillation efficiency of liquid argon in low energy neutron-argon scattering
Experiments searching for weak interacting massive particles with noble gases
such as liquid argon require very low detection thresholds for nuclear recoils.
A determination of the scintillation efficiency is crucial to quantify the
response of the detector at low energy. We report the results obtained with a
small liquid argon cell using a monoenergetic neutron beam produced by a
deuterium-deuterium fusion source. The light yield relative to electrons was
measured for six argon recoil energies between 11 and 120 keV at zero electric
drift field.Comment: 21 pages, 19 figures, 4 table
Gator: a low-background counting facility at the Gran Sasso Underground Laboratory
A low-background germanium spectrometer has been installed and is being
operated in an ultra-low background shield (the Gator facility) at the Gran
Sasso underground laboratory in Italy (LNGS). With an integrated rate of ~0.16
events/min in the energy range between 100-2700 keV, the background is
comparable to those of the world's most sensitive germanium detectors. After a
detailed description of the facility, its background sources as well as the
calibration and efficiency measurements are introduced. Two independent
analysis methods are described and compared using examples from selected sample
measurements. The Gator facility is used to screen materials for XENON, GERDA,
and in the context of next-generation astroparticle physics facilities such as
DARWIN.Comment: 14 pages, 6 figures, published versio
A simple high-sensitivity technique for purity analysis of xenon gas
We report on the development and performance of a high-sensitivity
purity-analysis technique for gaseous xenon. The gas is sampled at macroscopic
pressure from the system of interest using a UHV leak valve. The xenon present
in the sample is removed with a liquid-nitrogen cold trap, and the remaining
impurities are observed with a standard vacuum mass-spectroscopy device. Using
calibrated samples of xenon gas spiked with known levels of impurities, we find
that the minimum detectable levels of N2, O2, and methane are 1 ppb, 160 ppt,
and 60 ppt respectively. This represents an improvement of about a factor of
10,000 compared to measurements performed without a coldtrap.Comment: 20 pages, 5 figure
Recent results in Dark Matter direct detection
Finding a solution to the Dark Matter problem is surely one of the main challenges of modern cosmology. The existence of both Dark Matter and Dark Energy has been formulated on the basis of strong observational evidences, and constitutes the main success of the most accredited cosmological models. Yet none of them has been directly detected. In this review the Dark Matter problem will be discussed and the approaches to directly detect it, in the form of a special category of particles, i.e. the WIMPs (Weakly Interacting Massive Particles), will be presented and discussed
3D Position Sensitive XeTPC for Dark Matter Search
The technique to realize 3D position sensitivity in a two-phase xenon time
projection chamber (XeTPC) for dark matter search is described. Results from a
prototype detector (XENON3) are presented.Comment: Presented at the 7th UCLA Symposium on "Sources and Detection of Dark
Matter and Dark Energy in the Universe
First Dark Matter Results from the XENON100 Experiment
The XENON100 experiment, in operation at the Laboratori Nazionali del Gran
Sasso in Italy, is designed to search for dark matter WIMPs scattering off 62
kg of liquid xenon in an ultra-low background dual-phase time projection
chamber. In this letter, we present first dark matter results from the analysis
of 11.17 live days of non-blind data, acquired in October and November 2009. In
the selected fiducial target of 40 kg, and within the pre-defined signal
region, we observe no events and hence exclude spin-independent WIMP-nucleon
elastic scattering cross-sections above 3.4 x 10^-44 cm^2 for 55 GeV/c^2 WIMPs
at 90% confidence level. Below 20 GeV/c^2, this result constrains the
interpretation of the CoGeNT and DAMA signals as being due to spin-independent,
elastic, light mass WIMP interactions.Comment: 5 pages, 5 figures. Matches published versio
Constraints on inelastic dark matter from XENON10
It has been suggested that dark matter particles which scatter inelastically
from detector target nuclei could explain the apparent incompatibility of the
DAMA modulation signal (interpreted as evidence for particle dark matter) with
the null results from CDMS-II and XENON10. Among the predictions of
inelastically interacting dark matter are a suppression of low-energy events,
and a population of nuclear recoil events at higher nuclear recoil equivalent
energies. This is in stark contrast to the well-known expectation of a falling
exponential spectrum for the case of elastic interactions. We present a new
analysis of XENON10 dark matter search data extending to E keV
nuclear recoil equivalent energy. Our results exclude a significant region of
previously allowed parameter space in the model of inelastically interacting
dark matter. In particular, it is found that dark matter particle masses
GeV are disfavored.Comment: 8 pages, 4 figure
Study of nuclear recoils in liquid argon with monoenergetic neutrons
For the development of liquid argon dark matter detectors we assembled a
setup in the laboratory to scatter neutrons on a small liquid argon target. The
neutrons are produced mono-energetically (E_kin=2.45 MeV) by nuclear fusion in
a deuterium plasma and are collimated onto a 3" liquid argon cell operating in
single-phase mode (zero electric field). Organic liquid scintillators are used
to tag scattered neutrons and to provide a time-of-flight measurement. The
setup is designed to study light pulse shapes and scintillation yields from
nuclear and electronic recoils as well as from {\alpha}-particles at working
points relevant to dark matter searches. Liquid argon offers the possibility to
scrutinise scintillation yields in noble liquids with respect to the
populations of the two fundamental excimer states. Here we present experimental
methods and first results from recent data towards such studies.Comment: 9 pages, 8 figures, proceedings of TAUP 2011, to be published in
Journal of Physics: Conference Series (JCPS
- …
