682 research outputs found
Performance of the Micromegas detector in the CAST experiment
The gaseous Micromegas detector designed for the CERN Axion search experiment
CAST, operated smoothly during Phase-I, which included the 2003 and 2004
running periods. It exhibited linear response in the energy range of interest
(1-10keV), good spatial sensitivity and energy resolution (15-19% FWHM at
5.9keV)as well as remarkable stability. The detector's upgrade for the 2004
run, supported by the development of advanced offline analysis tools, improved
the background rejection capability, leading to an average rate 5x10^-5
counts/sec/cm^2/keV with 94% cut efficiency. Also, the origin of the detected
background was studied with a Monte Carlo simulation, using the GEANT4 package.Comment: Prepared for PSD7: The Seventh International Conference on Position
Sensitive Detectors, Liverpool, United Kingdom, 12-16 Sep. 200
Performances of Anode-resistive Micromegas for HL-LHC
Micromegas technology is a promising candidate to replace Atlas forward muon
chambers -tracking and trigger- for future HL-LHC upgrade of the experiment.
The increase on background and pile-up event probability requires detector
performances which are currently under studies in intensive RD activities.
We studied performances of four different resistive Micromegas detectors with
different read-out strip pitches. These chambers were tested using \sim120 GeV
momentum pions, at H6 CERN-SPS beam line in autumn 2010. For a strip pitch 500
micrometers we measure a resolution of \sim90 micrometers and a efficiency of
~98%. The track angle effect on the efficiency was also studied. Our results
show that resistive techniques induce no degradation on the efficiency or
resolution, with respect to the standard Micromegas. In some configuration the
resistive coating is able to reduce the discharge currents at least by a factor
of 100.Micromegas technology is a promising candidate to replace Atlas forward
muon chambers -tracking and trigger- for future HL-LHC upgrade of the
experiment. The increase on background and pile-up event probability requires
detector performances which are currently under studies in intensive RD
activities. We studied performances of four different resistive Micromegas
detectors with different read-out strip pitches. These chambers were tested
using \sim120 GeV momentum pions, at H6 CERN-SPS beam line in autumn 2010. For
a strip pitch 500 micrometers we measure a resolution of \sim90 micrometers and
a efficiency of \sim98%. The track angle effect on the efficiency was also
studied. Our results show that resistive techniques induce no degradation on
the efficiency or resolution, with respect to the standard Micromegas. In some
configuration the resistive coating is able to reduce the discharge currents at
least by a factor of 100.Comment: "Presented at the 2011 Hadron Collider Physics symposium (HCP-2011),
Paris, France, November 14-18 2011, 3 pages, 6 figures.
Energy resolution of alpha particles in a microbulk Micromegas detector at high pressure Argon and Xenon mixtures
The latest Micromesh Gas Amplification Structures (Micromegas) are achieving
outstanding energy resolution for low energy photons, with values as low as 11%
FWHM for the 5.9 keV line of Fe in argon/isobutane mixtures at
atmospheric pressure. At higher energies (MeV scale), these measurements are
more complicated due to the difficulty in confining the events in the chamber,
although there is no fundamental reason why resolutions of 1% FWHM or below
could not be reached. There is much motivation to demonstrate experimentally
this fact in Xe mixtures due to the possible application of Micromegas readouts
to the Double Beta Decay search of Xe, or in other experiments needing
calorimetry and topology in the same detector. In this paper, we report on
systematic measurements of energy resolution with state-of-the-art Micromegas
using a 5.5 MeV alpha source in high pressure Ar/isobutane mixtures. Values as
low as 1.8% FWHM have been obtained, with possible evidence that better
resolutions are achievable. Similar measurements in Xe, of which a preliminary
result is also shown here, are under progress.Comment: 16 pages, 19 figures, version after referees comments. Accepted for
publication in Nuclear Instruments and Methods
Lessons from the operation of the "Penning-Fluorescent" TPC and prospects
We have recently reported the development of a new type of high-pressure
Xenon time projection chamber operated with an ultra-low diffusion mixture and
that simultaneously displays Penning effect and fluorescence in the
near-visible region (300 nm). The concept, dubbed `Penning-Fluorescent' TPC,
allows the simultaneous reconstruction of primary charge and scintillation with
high topological and calorimetric fidelity
Radiopurity of Micromegas readout planes
Micromesh Gas Amplification Structures (Micromegas) are being used in an
increasing number of Particle Physics applications since their conception
fourteen years ago. More recently, they are being used or considered as readout
of Time Projection Chambers (TPCs) in the field of Rare Event searches (dealing
with dark matter, axions or double beta decay). In these experiments, the
radiopurity of the detector components and surrounding materials is measured
and finely controlled in order to keep the experimental background as low as
possible. In the present paper, the first measurement of the radiopurity of
Micromegas planes obtained by high purity germanium spectrometry in the low
background facilities of the Canfranc Underground Laboratory (LSC) is
presented. The obtained results prove that Micromegas readouts of the microbulk
type are currently manufactured with radiopurity levels below 30 microBq/cm2
for Th and U chains and ~60 microBq/cm2 for 40K, already comparable to the
cleanest detector components of the most stringent low background experiments
at present. Taking into account that the studied readouts were manufactured
without any specific control of the radiopurity, it should be possible to
improve these levels after dedicated development.Comment: 15 pages, 2 figure
A Micromegas-based low-background x-ray detector coupled to a slumped-glass telescope for axion research
We report on the design, construction and operation of a low background x-ray
detection line composed of a shielded Micromegas (micromesh gaseous structure)
detector of the microbulk technique. The detector is made from radiopure
materials and is placed at the focal point of a ~5 cm diameter, 1.3 m
focal-length, cone-approximation Wolter I x-ray telescope (XRT) comprised of
thermally-formed (or "slumped") glass substrates deposited with multilayer
coatings. The system has been conceived as a technological pathfinder for the
future International Axion Observatory (IAXO), as it combines two of the
techniques (optic and detector) proposed in the conceptual design of the
project. It is innovative for two reasons: it is the first time an x-ray optic
has been designed and fabricated specifically for axion research, and the first
time a Micromegas detector has been operated with an x-ray optic. The line has
been installed at one end of the CERN Axion Solar Telescope (CAST) magnet and
is currently looking for solar axions. The combination of the XRT and
Micromegas detector provides the best signal-to-noise ratio obtained so far by
any detection system of the CAST experiment with a background rate of
5.410counts per hour in the energy region-of-interest and
signal spot area.Comment: 21 pages, 16 figure
- …
