14 research outputs found
Oritavancin: A New Lipoglycopeptide Antibiotic in the Treatment of Gram-Positive Infections
In vitro Activity of Ceftaroline Against Isolates of Gram-Positive Bacteria from Patients with Bloodstream Infections Collected as a Part of ATLAS Between 2017 and 2020
Marie Kempf,1,2 Francis F Arhin,3 Alona Kuraieva,4 Eric Utt5 1Laboratory of Bacteriology, University Hospital Angers, Angers, France; 2INCIT, Inserm, CHU Angers, Univ Angers, Nantes Université, Angers, F-49000, France; 3Pfizer Inc, Kirkland, Quebec, Canada; 4Pfizer Inc, New York, NY, USA; 5Pfizer Inc, Groton, CT, USACorrespondence: Eric Utt, Pfizer Inc, Gorton, CT, 06340, USA, Tel +1 860 9174808, Email [email protected]: To assess the in vitro activity of ceftaroline and a panel of comparator agents against isolates of Gram-positive bacteria, including Staphylococcus aureus, Streptococcus pneumoniae, β-hemolytic streptococci, and coagulase-negative staphylococci (CoNS) from blood collected in Africa and Middle East (AfME), Asia Pacific (APAC), Europe, Latin America (LATAM), and North America from 2017 to 2020 as a part of the Antimicrobial Testing Leadership and Surveillance (ATLAS) program.Methods: Susceptibility and minimum inhibitory concentration were determined using broth microdilution for all antimicrobial agents by a central reference laboratory according to the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines.Results: Ceftaroline showed good activity (susceptibility ≥ 89.8%, MIC90 0.008– 2 mg/L) against all Gram-positive isolates tested. All isolates of methicillin-susceptible S. aureus, penicillin-susceptible S. pneumoniae, S. agalactiae, S. dysgalactiae, and S. pyogenes were susceptible to ceftaroline (MIC90 0.008– 0.25 mg/L). Ceftaroline susceptibility for MRSA isolates was 89.8% globally (MIC90 2 mg/L). Among the comparator agents, all isolates were susceptible to vancomycin, except S. epidermis (susceptibility, 99.9%). Among other agents, daptomycin, linezolid, and tigecycline showed potent activity (susceptibility ≥ 97.9%, MIC90 0.03– 2 mg/L) against all isolates tested.Conclusion: Ceftaroline showed potent in vitro activity against global bloodstream isolates of Gram-positive bacteria collected between 2017 and 2020. Monitoring and surveillance of global as well as regional longitudinal trends of resistance rates among Gram-positive isolates causing bloodstream infections are important to limit the spread of AMR, establish stewardship measures, and manage and appropriately treat infections.Keywords: ATLAS, bloodstream infections, ceftaroline, Gram-positive bacteria, surveillanc
Lipoglycopeptide Antibacterial Agents in Gram-Positive Infections: A Comparative Review.
Oritavancin, telavancin, and dalbavancin are recently marketed lipoglycopeptides that exhibit remarkable differences to conventional molecules. While dalbavancin inhibits the late stages of peptidoglycan synthesis by mainly impairing transglycosylase activity, oritavancin and telavancin anchor in the bacterial membrane by the lipophilic side chain linked to their disaccharidic moiety, disrupting membrane integrity and causing bacteriolysis. Oritavancin keeps activity against vancomycin-resistant enterocococci, being a stronger inhibitor of transpeptidase than of transglycosylase activity. These molecules have potent activity against Gram-positive organisms, most notably staphylococci (including methicillin-resistant Staphylococcus aureus and to some extent vancomycin-intermediate S. aureus), streptococci (including multidrug-resistant pneumococci), and Clostridia. All agents are indicated for the treatment of acute bacterial skin and skin structure infections, and telavancin, for hospital-acquired and ventilator-associated bacterial pneumonia. While telavancin is administered daily at 10 mg/kg, the remarkably long half-lives of oritavancin and dalbavancin allow for infrequent dosing (single dose of 1200 mg for oritavancin and 1000 mg at day 1 followed by 500 mg at day 8 for dalbavancin), which could be exploited in the future for outpatient therapy. Among possible safety issues evidenced during clinical development were an increased risk of developing osteomyelitis with oritavancin; taste disturbance, nephrotoxicity, and risk of corrected QT interval prolongation (especially in the presence of at-risk co-medications) with telavancin; and elevation of hepatic enzymes with dalbavancin. Interference with coagulation tests has been reported with oritavancin and telavancin. These drugs proved non-inferior to conventional treatments in clinical trials but their advantages may be better evidenced upon future evaluation in more severe infections
Oritavancin, a single-dose, complete regimen, for the treatment of acute bacterial skin and skin structure infections
Intimate adhesion of Neisseria meningitidis to human epithelial cells is under the control of the crgA gene, a novel LysR-type transcriptional regulator
PilC1, a pilus-associated protein in Neisseria menin– gitidis, is a key element in initial meningococcal adhesion to target cells. A promoter element (CREN, contact regulatory element of Neisseria) is responsible for the transient induction of this gene upon cell contact. crgA (contact-regulated gene A) encodes a transcriptional regulator whose expression is also induced upon cell contact from a promoter region similar to the CREN of pilC1. CrgA shows significant sequence homologies to LysR-type transcriptional regulators. Its inactivation in meningococci provokes a dramatic reduction in bacterial adhesion to epithelial cells. Moreover, this mutant is unable to undergo intimate adhesion to epithelial cells or to provoke effacing of microvilli on infected cells. Purified CrgA is able to bind to pilC1 and crgA promoters, and CrgA seems to repress the expression of pilC1 and crgA. Our results support a dynamic model of bacteria–cell interaction involving a network of regulators acting in cascade. CrgA could be an intermediate regulator in such a network
Oritavancin polymethylmethacrylate (PMMA)—compressive strength testing and in vitro elution
Surface-stress sensors for rapid and ultrasensitive detection of active free drugs in human serum
here is a growing appreciation that mechanical signals can be as important as chemical and electrical signals in biology. To include such signals in a systems biology description for understanding pathobiology and developing therapies, quantitative experiments on how solution-phase and surface chemistry together produce biologically relevant mechanical signals are needed. Because of the appearance of drug-resistant hospital ‘superbugs’, there is currently great interest in the destruction of bacteria by bound drug–target complexes that stress bacterial cell membranes. Here, we use nanomechanical cantilevers as surface-stress sensors, together with equilibrium theory, to describe quantitatively the mechanical response of a surface receptor to different antibiotics in the presence of competing ligands in solution. The antibiotics examined are the standard, Food and Drug Administration-approved drug of last resort, vancomycin, and the yet-to-be approved oritavancin, which shows promise for controlling vancomycin-resistant infections. The work reveals variations among strong and weak competing ligands, such as proteins in human serum, that determine dosages in drug therapies. The findings further enhance our understanding of the biophysical mode of action of the antibiotics and will help develop better treatments, including choice of drugs as well as dosages, against pathogens
