80 research outputs found
Sympathetic and swap cooling of trapped ions by cold atoms in a MOT
A mixed system of cooled and trapped, ions and atoms, paves the way for ion
assisted cold chemistry and novel many body studies. Due to the different
individual trapping mechanisms, trapped atoms are significantly colder than
trapped ions, therefore in the combined system, the strong binary ionatom
interaction results in heat flow from ions to atoms. Conversely, trapped ions
can also get collisionally heated by the cold atoms, making the resulting
equilibrium between ions and atoms intriguing. Here we experimentally
demonstrate, Rubidium ions (Rb) cool in contact with magneto-optically
trapped (MOT) Rb atoms, contrary to the general expectation of ion heating for
equal ion and atom masses. The cooling mechanism is explained theoretically and
substantiated with numerical simulations. The importance of resonant charge
exchange (RCx) collisions, which allows swap cooling of ions with atoms,
wherein a single glancing collision event brings a fast ion to rest, is
discussed.Comment: 10 pages, 3 figure
A trapped single ion inside a Bose-Einstein condensate
Improved control of the motional and internal quantum states of ultracold
neutral atoms and ions has opened intriguing possibilities for quantum
simulation and quantum computation. Many-body effects have been explored with
hundreds of thousands of quantum-degenerate neutral atoms and coherent
light-matter interfaces have been built. Systems of single or a few trapped
ions have been used to demonstrate universal quantum computing algorithms and
to detect variations of fundamental constants in precision atomic clocks. Until
now, atomic quantum gases and single trapped ions have been treated separately
in experiments. Here we investigate whether they can be advantageously combined
into one hybrid system, by exploring the immersion of a single trapped ion into
a Bose-Einstein condensate of neutral atoms. We demonstrate independent control
over the two components within the hybrid system, study the fundamental
interaction processes and observe sympathetic cooling of the single ion by the
condensate. Our experiment calls for further research into the possibility of
using this technique for the continuous cooling of quantum computers. We also
anticipate that it will lead to explorations of entanglement in hybrid quantum
systems and to fundamental studies of the decoherence of a single, locally
controlled impurity particle coupled to a quantum environment
Ultrasensitive force and displacement detection using trapped ions
The ability to detect extremely small forces is vital for a variety of
disciplines including precision spin-resonance imaging, microscopy, and tests
of fundamental physical phenomena. Current force-detection sensitivity limits
have surpassed 1 (atto ) through coupling of micro or
nanofabricated mechanical resonators to a variety of physical systems including
single-electron transistors, superconducting microwave cavities, and individual
spins. These experiments have allowed for probing studies of a variety of
phenomena, but sensitivity requirements are ever-increasing as new regimes of
physical interactions are considered. Here we show that trapped atomic ions are
exquisitely sensitive force detectors, with a measured sensitivity more than
three orders of magnitude better than existing reports. We demonstrate
detection of forces as small as 174 (yocto ), with a
sensitivity 390 using crystals of Be
ions in a Penning trap. Our technique is based on the excitation of normal
motional modes in an ion trap by externally applied electric fields, detection
via and phase-coherent Doppler velocimetry, which allows for the discrimination
of ion motion with amplitudes on the scale of nanometers. These experimental
results and extracted force-detection sensitivities in the single-ion limit
validate proposals suggesting that trapped atomic ions are capable of detecting
of forces with sensitivity approaching 1 . We anticipate that
this demonstration will be strongly motivational for the development of a new
class of deployable trapped-ion-based sensors, and will permit scientists to
access new regimes in materials science.Comment: Expanded introduction and analysis. Methods section added. Subject to
press embarg
Racism as a determinant of health: a systematic review and meta-analysis
Despite a growing body of epidemiological evidence in recent years documenting the health impacts of racism, the cumulative evidence base has yet to be synthesized in a comprehensive meta-analysis focused specifically on racism as a determinant of health. This meta-analysis reviewed the literature focusing on the relationship between reported racism and mental and physical health outcomes. Data from 293 studies reported in 333 articles published between 1983 and 2013, and conducted predominately in the U.S., were analysed using random effects models and mean weighted effect sizes. Racism was associated with poorer mental health (negative mental health: r = -.23, 95% CI [-.24,-.21], k = 227; positive mental health: r = -.13, 95% CI [-.16,-.10], k = 113), including depression, anxiety, psychological stress and various other outcomes. Racism was also associated with poorer general health (r = -.13 (95% CI [-.18,-.09], k = 30), and poorer physical health (r = -.09, 95% CI [-.12,-.06], k = 50). Moderation effects were found for some outcomes with regard to study and exposure characteristics. Effect sizes of racism on mental health were stronger in cross-sectional compared with longitudinal data and in non-representative samples compared with representative samples. Age, sex, birthplace and education level did not moderate the effects of racism on health. Ethnicity significantly moderated the effect of racism on negative mental health and physical health: the association between racism and negative mental health was significantly stronger for Asian American and Latino(a) American participants compared with African American participants, and the association between racism and physical health was significantly stronger for Latino(a) American participants compared with African American participants.<br /
AII amacrine cells: quantitative reconstruction and morphometric analysis of electrophysiologically identified cells in live rat retinal slices imaged with multi-photon excitation microscopy
Design and characterization of a linear quadrupole ion trap for high-resolution Coulomb-crystal time-of-flight mass spectrometry
Head and neck cancer surgery during the COVID-19 pandemic: An international, multicenter, observational cohort study
Background: The aims of this study were to provide data on the safety of head and neck cancer surgery currently being undertaken during the coronavirus disease 2019 (COVID-19) pandemic. Methods: This international, observational cohort study comprised 1137 consecutive patients with head and neck cancer undergoing primary surgery with curative intent in 26 countries. Factors associated with severe pulmonary complications in COVID-19–positive patients and infections in the surgical team were determined by univariate analysis. Results: Among the 1137 patients, the commonest sites were the oral cavity (38%) and the thyroid (21%). For oropharynx and larynx tumors, nonsurgical therapy was favored in most cases. There was evidence of surgical de-escalation of neck management and reconstruction. Overall 30-day mortality was 1.2%. Twenty-nine patients (3%) tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within 30 days of surgery; 13 of these patients (44.8%) developed severe respiratory complications, and 3.51 (10.3%) died. There were significant correlations with an advanced tumor stage and admission to critical care. Members of the surgical team tested positive within 30 days of surgery in 40 cases (3%). There were significant associations with operations in which the patients also tested positive for SARS-CoV-2 within 30 days, with a high community incidence of SARS-CoV-2, with screened patients, with oral tumor sites, and with tracheostomy. Conclusions: Head and neck cancer surgery in the COVID-19 era appears safe even when surgery is prolonged and complex. The overlap in COVID-19 between patients and members of the surgical team raises the suspicion of failures in cross-infection measures or the use of personal protective equipment. Lay Summary: Head and neck surgery is safe for patients during the coronavirus disease 2019 pandemic even when it is lengthy and complex. This is significant because concerns over patient safety raised in many guidelines appear not to be reflected by outcomes, even for those who have other serious illnesses or require complex reconstructions. Patients subjected to suboptimal or nonstandard treatments should be carefully followed up to optimize their cancer outcomes. The overlap between patients and surgeons testing positive for severe acute respiratory syndrome coronavirus 2 is notable and emphasizes the need for fastidious cross-infection controls and effective personal protective equipment
The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study
AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease
- …
