7,412 research outputs found
Human placental cytotrophoblasts produce the immunosuppressive cytokine interleukin 10.
The mechanism by which the mammalian mother accepts the implanting fetus as an allograft remains unexplained, but is likely to be the result of a combination of factors. Mononuclear cytotrophoblasts, the specialized fetal cells of the placenta that invade the uterus, play an important role. These cells express HLA-G, an unusual major histocompatibility complex class I-B molecule, and secrete cytokines and pregnancy-specific proteins that can regulate immune function. We investigated whether cytotrophoblasts secrete interleukin 10 (IL-10), a cytokine that potently inhibits alloresponses in mixed lymphocyte reactions. Cytotrophoblasts from all stages of pregnancy produced IL-10 in vitro, but neither placental fibroblasts nor choriocarcinoma (malignant trophoblast) cell lines did so. Spontaneous IL-10 production averaged 650, 853, and 992 pg/10(6) cells in the first, second, and third trimesters of pregnancy, respectively. IL-10 secretion dropped approximately 10-fold after the first 24 h of culture, and was paralleled by a decrease in messenger RNA. IL-10 messenger RNA was detected in biopsies of the placenta and the portion of the uterus that contains invasive cytotrophoblasts, suggesting that this cytokine is also produced in vivo. IL-10 secreted by cytotrophoblasts in vitro is bioactive, as determined by its ability to suppress interferon gamma production in an allogeneic mixed lymphocyte reaction. We conclude that human cytotrophoblast IL-10 may be an important factor that contributes to maternal tolerance of the allogeneic fetus
Asymmetric interlimb transfer of concurrent adaptation to opposing dynamic forces
Interlimb transfer of a novel dynamic force has been well documented. It has also been shown that unimanual adaptation to opposing novel environments is possible if they are associated with different workspaces. The main aim of this study was to test if adaptation to opposing velocity dependent viscous forces with one arm could improve the initial performance of the other arm. The study also examined whether this interlimb transfer occurred across an extrinsic, spatial, coordinative system or an intrinsic, joint based, coordinative system. Subjects initially adapted to opposing viscous forces separated by target location. Our measure of performance was the correlation between the speed profiles of each movement within a force condition and an ‘average’ trajectory within null force conditions. Adaptation to the opposing forces was seen during initial acquisition with a significantly improved coefficient in epoch eight compared to epoch one. We then tested interlimb transfer from the dominant to non-dominant arm (D → ND) and vice-versa (ND → D) across either an extrinsic or intrinsic coordinative system. Interlimb transfer was only seen from the dominant to the non-dominant limb across an intrinsic coordinative system. These results support previous studies involving adaptation to a single dynamic force but also indicate that interlimb transfer of multiple opposing states is possible. This suggests that the information available at the level of representation allowing interlimb transfer can be more intricate than a general movement goal or a single perceived directional error
Interfacial Tensions near Critical Endpoints: Experimental Checks of EdGF Theory
Predictions of the extended de Gennes-Fisher local-functional theory for the
universal scaling functions of interfacial tensions near critical endpoints are
compared with experimental data. Various observations of the binary mixture
isobutyric acid water are correlated to facilitate an analysis of the
experiments of Nagarajan, Webb and Widom who observed the vapor-liquid
interfacial tension as a function of {\it both} temperature and density.
Antonow's rule is confirmed and, with the aid of previously studied {\it
universal amplitude ratios}, the crucial analytic ``background'' contribution
to the surface tension near the endpoint is estimated. The residual singular
behavior thus uncovered is consistent with the theoretical scaling predictions
and confirms the expected lack of symmetry in . A searching test of
theory, however, demands more precise and extensive experiments; furthermore,
the analysis highlights, a previously noted but surprising, three-fold
discrepancy in the magnitude of the surface tension of isobutyric acid
water relative to other systems.Comment: 6 figure
Protecting eyewitness evidence: Examining the efficacy of a self-administered interview tool
Given the crucial role of eyewitness evidence, statements should be obtained as soon as possible after an incident. This is not always achieved due to demands on police resources. Two studies trace the development of a new tool, the Self-Administered Interview (SAI), designed to elicit a comprehensive initial statement. In Study 1, SAI participants reported more correct details than participants who provided a free recall account, and performed at the same level as participants given a Cognitive Interview. In Study 2, participants viewed a simulated crime and half recorded their statement using the SAI. After a delay of 1 week, all participants completed a free recall test. SAI participants recalled more correct details in the delayed recall task than control participants
Recognizing Members of the Tournament Equilibrium Set is NP-hard
A recurring theme in the mathematical social sciences is how to select the
"most desirable" elements given a binary dominance relation on a set of
alternatives. Schwartz's tournament equilibrium set (TEQ) ranks among the most
intriguing, but also among the most enigmatic, tournament solutions that have
been proposed so far in this context. Due to its unwieldy recursive definition,
little is known about TEQ. In particular, its monotonicity remains an open
problem up to date. Yet, if TEQ were to satisfy monotonicity, it would be a
very attractive tournament solution concept refining both the Banks set and
Dutta's minimal covering set. We show that the problem of deciding whether a
given alternative is contained in TEQ is NP-hard.Comment: 9 pages, 3 figure
Phase-slip induced dissipation in an atomic Bose-Hubbard system
Phase slips play a primary role in dissipation across a wide spectrum of
bosonic systems, from determining the critical velocity of superfluid helium to
generating resistance in thin superconducting wires. This subject has also
inspired much technological interest, largely motivated by applications
involving nanoscale superconducting circuit elements, e.g., standards based on
quantum phase-slip junctions. While phase slips caused by thermal fluctuations
at high temperatures are well understood, controversy remains over the role of
phase slips in small-scale superconductors. In solids, problems such as
uncontrolled noise sources and disorder complicate the study and application of
phase slips. Here we show that phase slips can lead to dissipation for a clean
and well-characterized Bose-Hubbard (BH) system by experimentally studying
transport using ultra-cold atoms trapped in an optical lattice. In contrast to
previous work, we explore a low velocity regime described by the 3D BH model
which is not affected by instabilities, and we measure the effect of
temperature on the dissipation strength. We show that the damping rate of
atomic motion-the analogue of electrical resistance in a solid-in the confining
parabolic potential fits well to a model that includes finite damping at zero
temperature. The low-temperature behaviour is consistent with the theory of
quantum tunnelling of phase slips, while at higher temperatures a cross-over
consistent with the transition to thermal activation of phase slips is evident.
Motion-induced features reminiscent of vortices and vortex rings associated
with phase slips are also observed in time-of-flight imaging.Comment: published in Nature 453, 76 (2008
A Bayesian method for evaluating and discovering disease loci associations
Background: A genome-wide association study (GWAS) typically involves examining representative SNPs in individuals from some population. A GWAS data set can concern a million SNPs and may soon concern billions. Researchers investigate the association of each SNP individually with a disease, and it is becoming increasingly commonplace to also analyze multi-SNP associations. Techniques for handling so many hypotheses include the Bonferroni correction and recently developed Bayesian methods. These methods can encounter problems. Most importantly, they are not applicable to a complex multi-locus hypothesis which has several competing hypotheses rather than only a null hypothesis. A method that computes the posterior probability of complex hypotheses is a pressing need. Methodology/Findings: We introduce the Bayesian network posterior probability (BNPP) method which addresses the difficulties. The method represents the relationship between a disease and SNPs using a directed acyclic graph (DAG) model, and computes the likelihood of such models using a Bayesian network scoring criterion. The posterior probability of a hypothesis is computed based on the likelihoods of all competing hypotheses. The BNPP can not only be used to evaluate a hypothesis that has previously been discovered or suspected, but also to discover new disease loci associations. The results of experiments using simulated and real data sets are presented. Our results concerning simulated data sets indicate that the BNPP exhibits both better evaluation and discovery performance than does a p-value based method. For the real data sets, previous findings in the literature are confirmed and additional findings are found. Conclusions/Significance: We conclude that the BNPP resolves a pressing problem by providing a way to compute the posterior probability of complex multi-locus hypotheses. A researcher can use the BNPP to determine the expected utility of investigating a hypothesis further. Furthermore, we conclude that the BNPP is a promising method for discovering disease loci associations. © 2011 Jiang et al
A global disorder of imprinting in the human female germ line
Imprinted genes are expressed differently depending on whether they are carried by a chromosome of maternal or paternal origin. Correct imprinting is established by germline-specific modifications; failure of this process underlies several inherited human syndromes. All these imprinting control defects are cis-acting, disrupting establishment or maintenance of allele-specific epigenetic modifications across one contiguous segment of the genome. In contrast, we report here an inherited global imprinting defect. This recessive maternal-effect mutation disrupts the specification of imprints at multiple, non-contiguous loci, with the result that genes normally carrying a maternal methylation imprint assume a paternal epigenetic pattern on the maternal allele. The resulting conception is phenotypically indistinguishable from an androgenetic complete hydatidiform mole, in which abnormal extra-embryonic tissue proliferates while development of the embryo is absent or nearly so. This disorder offers a genetic route to the identification of trans-acting oocyte factors that mediate maternal imprint establishment
Recent developments of the Hierarchical Reference Theory of Fluids and its relation to the Renormalization Group
The Hierarchical Reference Theory (HRT) of fluids is a general framework for
the description of phase transitions in microscopic models of classical and
quantum statistical physics. The foundations of HRT are briefly reviewed in a
self-consistent formulation which includes both the original sharp cut-off
procedure and the smooth cut-off implementation, which has been recently
investigated. The critical properties of HRT are summarized, together with the
behavior of the theory at first order phase transitions. However, the emphasis
of this presentation is on the close relationship between HRT and non
perturbative renormalization group methods, as well as on recent
generalizations of HRT to microscopic models of interest in soft matter and
quantum many body physics.Comment: 17 pages, 5 figures. Review paper to appear in Molecular Physic
- …
