43 research outputs found
Double Dissociation of Amygdala and Hippocampal Contributions to Trace and Delay Fear Conditioning
A key finding in studies of the neurobiology of learning memory is that the amygdala is critically involved in Pavlovian fear conditioning. This is well established in delay-cued and contextual fear conditioning; however, surprisingly little is known of the role of the amygdala in trace conditioning. Trace fear conditioning, in which the CS and US are separated in time by a trace interval, requires the hippocampus and prefrontal cortex. It is possible that recruitment of cortical structures by trace conditioning alters the role of the amygdala compared to delay fear conditioning, where the CS and US overlap. To investigate this, we inactivated the amygdala of male C57BL/6 mice with GABA A agonist muscimol prior to 2-pairing trace or delay fear conditioning. Amygdala inactivation produced deficits in contextual and delay conditioning, but had no effect on trace conditioning. As controls, we demonstrate that dorsal hippocampal inactivation produced deficits in trace and contextual, but not delay fear conditioning. Further, pre- and post-training amygdala inactivation disrupted the contextual but the not cued component of trace conditioning, as did muscimol infusion prior to 1- or 4-pairing trace conditioning. These findings demonstrate that insertion of a temporal gap between the CS and US can generate amygdala-independent fear conditioning. We discuss the implications of this surprising finding for current models of the neural circuitry involved in fear conditioning
Activity Dependent Protein Degradation Is Critical for the Formation and Stability of Fear Memory in the Amygdala
Protein degradation through the ubiquitin-proteasome system [UPS] plays a critical role in some forms of synaptic plasticity. However, its role in memory formation in the amygdala, a site critical for the formation of fear memories, currently remains unknown. Here we provide the first evidence that protein degradation through the UPS is critically engaged at amygdala synapses during memory formation and retrieval. Fear conditioning results in NMDA-dependent increases in degradation-specific polyubiquitination in the amygdala, targeting proteins involved in translational control and synaptic structure and blocking the degradation of these proteins significantly impairs long-term memory. Furthermore, retrieval of fear memory results in a second wave of NMDA-dependent polyubiquitination that targets proteins involved in translational silencing and synaptic structure and is critical for memory updating following recall. These results indicate that UPS-mediated protein degradation is a major regulator of synaptic plasticity necessary for the formation and stability of long-term memories at amygdala synapses
Post-Training Dephosphorylation of eEF-2 Promotes Protein Synthesis for Memory Consolidation
Memory consolidation, which converts acquired information into long-term storage, is new protein synthesis-dependent. As protein synthesis is a dynamic process that is under the control of multiple translational mechanisms, however, it is still elusive how these mechanisms are recruited in response to learning for memory consolidation. Here we found that eukaryotic elongation factor-2 (eEF-2) was dramatically dephosphorylated within 0.5–2 hr in the hippocampus and amygdala of mice following training in a fear-conditioning test, whereas genome-wide microarrays did not reveal any significant change in the expression level of the mRNAs for translational machineries or their related molecules. Moreover, blockade of NMDA receptors with MK-801 immediately following the training significantly impeded both the post-training eEF-2 dephosphorylation and memory retention. Notably, with an elegant sophisticated transgenic strategy, we demonstrated that hippocampus-specific overexpression of eEF-2 kinase, a kinase that specifically phosphorylates and hence inactivates eEF-2, significantly inhibited protein synthesis in the hippocampus, and this effects was more robust during an “ongoing” protein synthesis process. As a result, late phase long-term potentiation (L-LTP) in the hippocampus and long-term hippocampus-dependent memory in the mice were significantly impaired, whereas short-term memory and long-term hippocampus-independent memory remained intact. These results reveal a novel translational underpinning for protein synthesis pertinent to memory consolidation in the mammalian brain
Lesions of the periaqueductal gray and rostral ventromedial medulla disrupt antinociceptive but not cardiovascular aversive conditional responses
The presentation of an auditory stimulus that signals a noxious event such as foot shock results in the simultaneous expression of multiple aversive conditional responses (CRs), which include a transient elevation of arterial blood pressure (ABP) and an opioid-mediated form of hypoalgesia. Recent evidence suggests that the neural circuits responsible for the expression of these two aversive responses may overlap. In the present study, rats were trained using a Pavlovian fear conditioning paradigm in which white noise was repeatedly paired with shock. After training, groups of animals received electrolytic lesions centered in the dorsal or ventral periaqueductal gray (PAG) or in the medial or lateral rostral medulla. In sham-lesioned animals that were given paired presentations of noise and shock, subsequent presentation of the auditory stimulus caused a significant transient elevation of ABP and time-dependent inhibition of the tail flick reflex evoked by radiant heat. Lesions of either the dorsal or the ventral PAG blocked the antinociceptive CR but did not significantly affect ABP responses. Lesions of the ventromedial, but not the lateral, rostral medulla blocked hypoalgesia. Rostral medullary lesions did not reliably affect stimulus-evoked cardiovascular responses or baseline ABP. These results indicate that antinociceptive and cardiovascular conditional responses are anatomically dissociable and support our proposal that conditional hypoalgesia is mediated by a serial neural circuit that includes the amygdala, PAG, and rostral ventromedial medulla.</jats:p
