259 research outputs found
Socioeconomic differentials in the immediate mortality effects of the national Irish smoking ban
This article has been made available through the Brunel Open Access Publishing Fund.Background: Consistent evidence has demonstrated that smoking ban policies save lives, but impacts on health inequalities are uncertain as few studies have assessed post-ban effects by socioeconomic status (SES) and findings have been inconsistent. The aim of this study was to assess the effects of the national Irish smoking ban on ischemic heart disease (IHD), stroke, and chronic obstructive pulmonary disease (COPD) mortality by discrete and composite SES indicators to determine impacts on inequalities. Methods: Census data were used to assign frequencies of structural and material SES indicators to 34 local authorities across Ireland with a 2000–2010 study period. Discrete indicators were jointly analysed through principal component analysis to generate a composite index, with sensitivity analyses conducted by varying the included indicators. Poisson regression with interrupted time-series analysis was conducted to examine monthly age and gender-standardised mortality rates in the Irish population, ages ≥35 years, stratified by tertiles of SES indicators. All models were adjusted for time trend, season, influenza, and smoking prevalence. Results: Post-ban mortality reductions by structural SES indicators were concentrated in the most deprived tertile for all causes of death, while reductions by material SES indicators were more equitable across SES tertiles. The composite indices mirrored the results of the discrete indicators, demonstrating that post-ban mortality decreases were either greater or similar in the most deprived when compared to the least deprived for all causes of death. Conclusions: Overall findings indicated that the national Irish smoking ban reduced inequalities in smoking-related mortality. Due to the higher rates of smoking-related mortality in the most deprived group, even equitable reductions across SES tertiles resulted in decreases in inequalities. The choice of SES indicator was influential in the measurement of effects, underscoring that a differentiated analytical approach aided in understanding the complexities in which structural and material factors influence mortality
The role of mixing and surface hydrophobicity on the operation of a continuous tubular slug flow crystalliser for lysozyme
Continuous crystallisation is currently seen as a more economic and efficient alternative compared to standard techniques for the purification of biopharmaceutical proteins. Despite being promising as continuous crystalliser platforms, tubular slug flow crystallisers pose their challenges due to the tendency of proteins to accumulate at solid surfaces, to form amorphous precipitates at high protein concentrations and to undergo slow diffusive mass transport. This work investigates the effect of equipment surface chemistry and physical mixing on the design and operability of a tubular slug flow crystalliser for lysozyme under laminar flow conditions (Re ∼ 1). Firstly, glass tubes with different surface functional groups, –OH or –CH3, with water contact angles between 9° and 99°, were investigated. CH3 surfaces resulted in a up to 33% delayed onset of nucleation, demonstrating lower heterogeneous nucleation rates, and therefore are better suited to prevent fouling. However, a surface chemistry-independent deposition of lysozyme was found, altering the water contact angle by up to 56°, resulting in an unstable slug flow and a reduction of the onset of nucleation by up to 11.5-fold. To achieve a stable slug flow and controlled nucleation, the surface functional groups were recovered by implementing surface-specific cleaning protocols comprising NaOH or liquid detergent. To overcome poor mixing and amorphous precipitation, a two-step mixing approach, consisting of an intermediate mixing step was developed. This novel mixing approach reduced the mixing time from > 10 min to < 10 s, allowing the achievement of an instantaneous homogeneous solution under laminar flow conditions. Overall, the findings of this study are therefore of crucial relevance to the future design and operation of tubular slug flow crystallisers as purification platforms for biopharmaceutical proteins
Physics of Neutron Star Crusts
The physics of neutron star crusts is vast, involving many different research
fields, from nuclear and condensed matter physics to general relativity. This
review summarizes the progress, which has been achieved over the last few
years, in modeling neutron star crusts, both at the microscopic and macroscopic
levels. The confrontation of these theoretical models with observations is also
briefly discussed.Comment: 182 pages, published version available at
<http://www.livingreviews.org/lrr-2008-10
A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis
Introduction: Bone is an integral part of the osteoarthritis (OA) process. We conducted a systematic literature review in order to understand the relationship between non-conventional radiographic imaging of subchondral bone, pain, structural pathology and joint replacement in peripheral joint OA. Methods: A search of the Medline, EMBASE and Cochrane library databases was performed for original articles reporting association between non-conventional radiographic imaging-assessed subchondral bone pathologies and joint replacement, pain or structural progression in knee, hip, hand, ankle and foot OA. Each association was qualitatively characterised by a synthesis of the data from each analysis based upon study design, adequacy of covariate adjustment and quality scoring. Results: In total 2456 abstracts were screened and 139 papers were included (70 cross-sectional, 71 longitudinal analyses; 116 knee, 15 hip, six hand, two ankle and involved 113 MRI, eight DXA, four CT, eight scintigraphic and eight 2D shape analyses). BMLs, osteophytes and bone shape were independently associated with structural progression or joint replacement. BMLs and bone shape were independently associated with longitudinal change in pain and incident frequent knee pain respectively. Conclusion: Subchondral bone features have independent associations with structural progression, pain and joint replacement in peripheral OA in the hip and hand but especially in the knee. For peripheral OA sites other than the knee, there are fewer associations and independent associations of bone pathologies with these important OA outcomes which may reflect fewer studies; for example the foot and ankle were poorly studied. Subchondral OA bone appears to be a relevant therapeutic target. Systematic review: PROSPERO registration number: CRD 4201300500
Process modelling of protein crystallisation: A case study of lysozyme
With the rise in interest of protein crystallisation as a purification step in downstream processing, there is significant interest in the process modelling of these crystallisation steps. Herein, we demonstrate and compare the applicability of “traditional” nucleation and growth models, commonly used to model small molecule crystallisation, for the successful population balance modelling of lysozyme crystallisation at the 100 mL and 1 L scales. Results show that both empirical power-law and first-principles models for nucleation and growth provide good fits to experimental data. Results from parameter estimation highlight a high degree of model sensitivity to initial guesses and stress the importance of providing particle size estimates in order to extract sensible data from the models. Estimates obtained for the 100 mL scale provided suitable initial guesses for the 1 L scale, despite significant differences in the final values obtained at each scale. For future work, further investigation into model validation upon scale-up is recommended. The work performed demonstrates the effectiveness of population balance modelling in the prediction of protein crystallisation behaviour, regardless of the underlying physical phenomena
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Testing the Assumption of Measurement Invariance in the SAMHSA Mental Health and Alcohol Abuse Stigma Assessment in Older Adults
Routine MRI findings of the asymptomatic foot in diabetic patients with unilateral Charcot foot
<p>Abstract</p> <p>Background</p> <p>Imaging studies of bones in patients with sensory deficits are scarce.</p> <p>Aim</p> <p>To investigate bone MR images of the lower limb in diabetic patients with severe sensory polyneuropathy, and in control subjects without sensory deficits.</p> <p>Methods</p> <p>Routine T1 weighted and T2-fat-suppressed-STIR-sequences without contrast media were performed of the asymptomatic foot in 10 diabetic patients with polyneuropathy and unilateral inactive Charcot foot, and in 10 matched and 10 younger, non-obese unmatched control subjects. Simultaneously, a Gadolinium containing phantom was also assessed for reference. T1 weighted signal intensity (SI) was recorded at representative regions of interest at the peritendineal soft tissue, the tibia, the calcaneus, and at the phantom. Any abnormal skeletal morphology was also recorded.</p> <p>Results</p> <p>Mean SI at the soft tissue, the calcaneus, and the tibia, respectively, was 105%, 105% and 84% of that at the phantom in the matched and unmatched control subjects, compared to 102% (soft tissue), 112% (calcaneus) and 64% (tibia) in the patients; differences of tibia vs. calcaneus or soft tissue were highly significant (p < 0.005). SI at the tibia was lower in the patients than in control subjects (p < 0.05). Occult traumatic skeletal lesions were found in 8 of the 10 asymptomatic diabetic feet (none in the control feet).</p> <p>Conclusion</p> <p>MR imaging did not reveal grossly abnormal bone marrow signalling in the limbs with severe sensory polyneuropathy, but occult sequelae of previous traumatic injuries.</p
The Maristán stigma scale: a standardized international measure of the stigma of schizophrenia and other psychoses
Background:
People with schizophrenia face prejudice and discrimination from a number of sources including professionals and families. The degree of stigma perceived and experienced varies across cultures and communities. We aimed to develop a cross-cultural measure of the stigma perceived by people with schizophrenia.Method:
Items for the scale were developed from qualitative group interviews with people with schizophrenia in six countries. The scale was then applied in face-to-face interviews with 164 participants, 103 of which were repeated after 30 days. Principal Axis Factoring and Promax rotation evaluated the structure of the scale; Horn’s parallel combined with bootstrapping determined the number of factors; and intra-class correlation assessed test-retest reliability.Results:
The final scale has 31 items and four factors: informal social networks, socio-institutional, health professionals and self-stigma. Cronbach’s alpha was 0.84 for the Factor 1; 0.81 for Factor 2; 0.74 for Factor 3, and 0.75 for Factor 4. Correlation matrix among factors revealed that most were in the moderate range [0.31-0.49], with the strongest occurring between perception of stigma in the informal network and self-stigma and there was also a weaker correlation between stigma from health professionals and self-stigma. Test-retest reliability was highest for informal networks [ICC 0.76 [0.67 -0.83]] and self-stigma [ICC 0.74 [0.64-0.81]]. There were no significant differences in the scoring due to sex or age. Service users in Argentina had the highest scores in almost all dimensions.Conclusions:
The MARISTAN stigma scale is a reliable measure of the stigma of schizophrenia and related psychoses across several cultures. A confirmatory factor analysis is needed to assess the stability of its factor structure.We are also grateful for support from the Pan-American Health Office (PAHO), Camden and Islington NHS Foundation Trust and University College London (UCL)
Development of an In Vitro Compartmentalization Screen for High-Throughput Directed Evolution of [FeFe] Hydrogenases
BACKGROUND: [FeFe] hydrogenase enzymes catalyze the formation and dissociation of molecular hydrogen with the help of a complex prosthetic group composed of common elements. The development of energy conversion technologies based on these renewable catalysts has been hindered by their extreme oxygen sensitivity. Attempts to improve the enzymes by directed evolution have failed for want of a screening platform capable of throughputs high enough to adequately sample heavily mutated DNA libraries. In vitro compartmentalization (IVC) is a powerful method capable of screening for multiple-turnover enzymatic activity at very high throughputs. Recent advances have allowed [FeFe] hydrogenases to be expressed and activated in the cell-free protein synthesis reactions on which IVC is based; however, IVC is a demanding technique with which many enzymes have proven incompatible. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe an extremely high-throughput IVC screen for oxygen-tolerant [FeFe] hydrogenases. We demonstrate that the [FeFe] hydrogenase CpI can be expressed and activated within emulsion droplets, and identify a fluorogenic substrate that links activity after oxygen exposure to the generation of a fluorescent signal. We present a screening protocol in which attachment of mutant genes and the proteins they encode to the surfaces of microbeads is followed by three separate emulsion steps for amplification, expression, and evaluation of hydrogenase mutants. We show that beads displaying active hydrogenase can be isolated by fluorescence-activated cell-sorting, and we use the method to enrich such beads from a mock library. CONCLUSIONS/SIGNIFICANCE: [FeFe] hydrogenases are the most complex enzymes to be produced by cell-free protein synthesis, and the most challenging targets to which IVC has yet been applied. The technique described here is an enabling step towards the development of biocatalysts for a biological hydrogen economy
- …
