8,803 research outputs found

    B -> pi pi, New Physics in B -> pi K and Implications for Rare K and B Decays

    Full text link
    The measured B -> pi pi, pi K branching ratios exhibit puzzling patterns. We point out that the B -> pi pi hierarchy can be nicely accommodated in the Standard Model (SM) through non-factorizable hadronic interference effects, whereas the B -> pi K system may indicate new physics (NP) in the electroweak (EW) penguin sector. Using the B -> pi pi data and the SU(3) flavour symmetry, we may fix the hadronic B -> pi K parameters, which allows us to show that any currently observed feature of the B -> pi K system can be easily explained through enhanced EW penguins with a large CP-violating NP phase. Restricting ourselves to a specific scenario, where NP enters only through Z^0 penguins, we derive links to rare K and B decays, where an enhancement of the K_L-> pi^0 nu nu_bar rate by one order of magnitude, with BR(K_L -> pi^0 nu nu_bar) > BR(K^+ -> pi^+ nu nu_bar), BR(K_L -> pi^0 e^+ e^-)=O(10^{-10}), (\sin2\beta)_{pi nu nu_bar} K* mu^+ mu^-, are the most spectacular effects. We address also other rare K and B decays, epsilon'/epsilon and B_d -> phi K_S.Comment: 6 pages, LaTeX, reference added and a few typos correced, to appear in Physical Review Letter

    New Aspects of B -> pi pi, pi K and their Implications for Rare Decays

    Full text link
    We analyse the B -> pi pi, pi K modes in the light of the most recent B-factory data, and obtain the following new results: (i) the B0 -> pi+ pi-, pi- K+ modes prefer gamma=(74+-6)deg, which - together with |V_ub/V_cb| - allows us to determine the ``true'' unitarity triangle and to search for CP-violating new-physics contributions to B0_d-\bar B0_d mixing; (ii) the B -> pi K puzzle reflected in particular by the low experimental value of the ratio R_n of the neutral B -> pi K rates persists and still favours new physics in the electroweak penguin sector with a new CP-violating phase phi ~ -90deg, although now also phi ~ +90deg can bring us rather close to the data; (iii) the mixing-induced B0 -> pi0 K_S CP asymmetry is a sensitive probe of the sign of this phase, and would currently favour phi ~ +90deg, as well as the direct CP asymmetry of B+- -> pi0 K+-, which suffers, however, from large hadronic uncertainties; (iv) we investigate the sensitivity of our B -> pi K analysis to large non-factorizable SU(3)-breaking effects and find that their impact is surprisingly small so that it is indeed exciting to speculate on new physics; (v) assuming that new physics enters through Z0 penguins, we study the interplay between B -> pi K and rare B, K decays and point out that the most recent B-factory constraints for the latter have interesting implications, bringing us to a few scenarios for the future evolution of the data, where also the mixing-induced CP violation in B0 -> pi0 K_S plays a prominent role.Comment: Two references added, to appear in the European Physical Journal

    The B -> pi K Puzzle and its Relation to Rare B and K Decays

    Full text link
    The Standard-Model interpretation of the ratios of charged and neutral B-> pi K rates, R_c and R_n, respectively, points towards a puzzling picture. Since these observables are affected significantly by colour-allowed electroweak (EW) penguins, this ``B -> pi K puzzle'' could be a manifestation of new physics in the EW penguin sector. Performing the analysis in the R_n-R_c plane, which is very suitable for monitoring various effects, we demonstrate that we may, in fact, move straightforwardly to the experimental region in this plane through an enhancement of the relevant EW penguin parameter q. We derive analytical bounds for q in terms of a quantity L, that measures the violation of the Lipkin sum rule, and point out that strong phases around 90 deg are favoured by the data, in contrast to QCD factorisation. The B -> pi K modes imply a correlation between q and the angle gamma that in the limit of negligible rescattering effects and colour suppressed EW penguins depends only on the value of L. Concentrating on a minimal flavour-violating new-physics scenario with enhanced Z^0 penguins, we find that the current experimental values on B -> X_s mu^+ mu^- require roughly L pi K data give L = 5.7 +- 2.4, L has either to move to smaller values once the B -> pi K data improve or new sources of flavour and CP violation are needed. In turn, the enhanced values of L seen in the B -> pi K data could be accompanied by enhanced branching ratios for rare decays. Most interesting turns out to be the correlation between the B -> pi K modes and BR(K^+ -> pi^+ nu nu), with the latter depending approximately on a single ``scaling'' variable \bar L= L (|V_{ub}/V_{cb}|/0.086)^2.3.Comment: 19 pages, 7 figures, a few typos corrected and two references adde

    Elektroweak one-loop corrections for e^+e^- annihilation into t\bar{t} including hard bremsstrahlung

    Get PDF
    We present the complete electroweak one-loop corrections to top-pair production at a linear e^+e^- collider in the continuum region. Besides weak and photonic virtual corrections, real hard bremsstrahlung with simple realistic kinematical cuts is included. For the bremsstrahlung we advocate a semi-analytical approach with a high numerical accuracy. The virtual corrections are parametrized through six independent form factors, suitable for Monte-Carlo implementation. Alternatively, our numerical package topfit, a stand-alone code, can be utilized for the calculation of both differential and integrated cross sections as well as forward--backward asymmetries.Comment: 34 page

    Exploring CP Violation through B Decays

    Full text link
    The B-meson system provides many strategies to perform stringent tests of the Standard-Model description of CP violation. In this brief review, we discuss implications of the currently available B-factory data on the angles alpha, beta and gamma of the unitarity triangle, emphasize the importance of Bs studies at hadronic B experiments, and discuss new, theoretically clean strategies to determine gamma.Comment: 22 pages, 4 figures, invited brief review for Modern Physics Letters

    Model Independent Bound on the Unitarity Triangle from CP Violation in B-> pi+ pi- and B-> psi K_S

    Full text link
    We derive model independent lower bounds on the CKM parameters (1-rhobar) and etabar as functions of the mixing-induced CP asymmetry S in B-> pi+ pi- and sin(2 beta) from B->psi K_S. The bounds do not depend on specific results of theoretical calculations for the penguin contribution to B-> pi+ pi-. They require only the very conservative condition that a hadronic phase, which vanishes in the heavy-quark limit, does not exceed 90 degrees in magnitude. The bounds are effective if -sin(2 beta) < S < 1. Dynamical calculations indicate that the limits on rhobar and etabar are close to their actual values.Comment: 5 pages, 2 figure

    The Differential equation method: calculation of vertex-type diagrams with one non-zero mass

    Get PDF
    The differential equation method is applied to evaluate analytically two-loop vertex Feynman diagrams. Three on-shell infrared divergent planar two-loop diagrams with zero thresholds contributing to the processes Z --> bb bar (for zero b mass) and/or H --> gg are calculated in order to demonstrate a new application of this method.Comment: 12 pages, LATEX, uses axodray.st

    Two-loop self-energy master integrals on shell

    Get PDF
    Analytic results for the complete set of two-loop self-energy master integrals on shell with one mass are calculated.Comment: 14 pages, LaTeX, one eps-figure; in v5. misprints in the Eq.(2) and Table II correcte

    Massive two-loop Bhabha scattering -- the factorizable subset

    Get PDF
    The experimental precision that will be reached at the next generation of colliders makes it indispensable to improve theoretical predictions significantly. Bhabha scattering (e^+ e^- \to e^+ e^-) is one of the prime processes calling for a better theoretical precision, in particular for non-zero electron masses. We present a first subset of the full two-loop calculation, namely the factorizable subset. Our calculation is based on DIANA. We reduce tensor integrals to scalar integrals in shifted (increased) dimensions and additional powers of various propagators, so-called dots-on-lines. Recurrence relations remove those dots-on-lines as well as genuine dots-on-lines (originating from mass renormalization) and reduce the dimension of the integrals to the generic d = 4 - 2 \epsilon dimensions. The resulting master integrals have to be expanded to O(ϵ){\it O}(\epsilon) to ensure proper treatment of all finite terms.Comment: 5 pages, Talk presented by A.W. at RADCOR and Loops and Legs 2002 in Banz, Germany, to appear in the proceeding

    Limitations in Measuring the Angle β\beta by Using SU(3)SU(3) Relations for BB-Meson Decay-Amplitudes

    Get PDF
    Flavour SU(3)SU(3) symmetry of strong interactions and certain dynamical assumptions have been used in a series of recent publications to extract weak CKM phases from BB-decays into {ππ,πK,KKˉ}\{\pi\pi,\pi K, K\bar K\} final states. We point out that irrespectively of SU(3)SU(3)-breaking effects the presence of QCD-penguin contributions with internal uu- and cc-quarks precludes a clean determination of the angle β\beta in the unitarity triangle by using the branching ratios only. This difficulty can be overcome by measuring in addition the ratio xd/xsx_d/x_s of Bd0Bˉd0B^0_d-\bar B^0_d to Bs0Bˉs0B^0_s-\bar B^0_s mixings. The measurement of the angle γ\gamma is unaffected by these new contributions. Some specific uncertainties related to SU(3)SU(3)-breaking effects and electroweak penguin contributions are briefly discussed.Comment: 15 pages (LaTeX) + 5 figures included, Munich Technical University preprint TUM-T31-69/9
    corecore