13 research outputs found

    Thin film hexagonal gold grids as transparent conducting electrodes in organic light emitting diodes

    No full text
    Indium Tin Oxide (ITO) coated glass is currently the preferred transparent conducting electrode (TCE) for organic light emitting diodes (OLEDs). However, ITO has its drawbacks, not least the scarcity of Indium, high processing temperatures, and inflexibility. A number of technologies have been put forward as replacements for ITO. In this paper, an OLED based on a gold grid TCE is demonstrated, the light emission through the grid is examined, and luminance and current measurements are reported. The gold grid has a sheet resistance of 15 Ω□-1 and a light transmission of 63 % at 550 nm, comparable to ITO, but with advantages in terms of processing conditions and cost. The gold grid OLED has a lower turn-on voltage (7.7 V versus 9.8 V) and achieves a luminance of 100 cdm-2 at a lower voltage (10.9 V versus 12.4 V) than the reference ITO OLED. The lower turn-on voltage and the uniformity of the light output through the gold grid TCE are discussed, and the conduction mechanisms in the ITO and gold grid TCE OLEDs are examined

    Comparison of Causes of Maternal Mortality in the Limpopo Province between 2011/13 and 2014/16: Findings from the National Committee of Confidential Enquiry into Maternal Deaths in South Africa

    No full text
    Abstract Objective To review and compare underlying causes of maternal deaths in Limpopo Province (LP) using data of the National Committee of Confidential Enquiry into Maternal Deaths in South Africa (NCCEMD). Method This is a review of the findings of the causes of maternal deaths from the two trienniums 2011-2013 and 2014-2016 of the NCCEMD. When pregnancy related deaths occur a maternal death notification form is completed and submitted to the provincial Maternal, Child and Women's Health (MCWH) units. The provincial assessors assess the death and forward the report to the NCCEMD, where the data are collated and analyzed to provide summary estimates for the extent of important public-health problems. Results In the triennial 2011/13, 750 women deaths were recorded in LP of which 728 (97.1%) were maternal deaths and 22(2.9%) were coincidental deaths. While in the triennial 2014/16, of the 623 women deaths, 607(97.4%) were maternal deaths and 16 (2.6%) were coincidental deaths. In both trienniums, non-pregnancy related infections, obstetric haemorrhage, pregnancy-induced hypertensive disorders and medical and surgical disorders were the leading cause of deaths and accounted for two-thirds of maternal deaths. The number of deaths due to non-pregnancy related infections significantly decreases from 228 to 135 (p&lt;0.05), while deaths due to medical and surgical disorders slightly increased (from 66 to 69, p&gt;0.05). There was a marked reduction in the number of obstetric haemorrhage, pregnancy-induced hypertensive disorders, pregnancy-related sepsis, anaesthetic complications, ruptured ectopic pregnancy and acute collapse-cause unknown but the result did not reach statistical significance (p&gt;0.05), and deaths due to miscarriage increased (p&gt;0.05). The number of deaths due to pulmonary embolism increased significantly (p&lt;0.05). Conclusion Although there is a reduction in the number of maternal deaths in LP, non-pregnancy related infections, obstetric haemorrhage, pregnancy-induced hypertensive disorders and medical and surgical disorders remain the major causes of maternal death and pulmonary embolism is an emerging concern.</jats:p

    Storage Lifetime of Polymer-Carbon Nanotube Inks for Use as Charge Transport Layers in Organic Light Emitting Diodes

    No full text
    The long-term stability of multi-wall carbon nanotubes (MWCNT) mixed with the hole-transport polymer Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been examined. These surfactant stabilised solutions, used as transport layers in organic light emitting diodes (OLEDs), are shown to be stable for periods of up to fifteen months, and show no signs of degrading soon after this time. In comparison, non-stabilised aqueous MWCNT solutions have been shown to aggregate within 30 minutes of production, and, although these aggregates can be re-dispersed, the solution displays an increase in smaller aggregates over time which cannot subsequently be re-dispersed by manual agitation. The stable MWCNT/PEDOT:PSS solutions have been used in ink-jet printing and as composite MWCNT/PEDOT:PSS films suitable as charge transport layers in spin coated organic light emitting diodes

    Hybrid metal grid-polymer-carbon nanotubes electrodes for high luminance organic light emitting diodes

    Get PDF
    Organic light emitting diodes (OLEDs) incorporating grid transparent conducting electrodes (TCEs) with wide grid line spacing suffer from an inability to transfer charge carriers across the gaps in the grids to promote light emission in these areas. High luminance OLEDs fabricated using a hybrid transparent conducting electrode (TCE) composed of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS PH1000) or regioregular poly(3-hexylthiophene)-wrapped semiconducting single-walled carbon nanotubes (rrP3HT-SWCNT) in combination with a nanometre thin gold grid are reported here. OLEDs fabricated using the hybrid gold grid/PH1000 TCE have a luminance of 18,000 cd/m2 at 9 V; the same as the reference indium tin oxide (ITO) OLED. The gold grid/rrP3HT-SWCNT OLEDs have a lower luminance of 8,260 cd/m2 at 9 V, which is likely due to a rougher rrP3HT-SWCNT surface. These results demonstrate that the hybrid gold grid/PH1000 TCE is a promising replacement for ITO in future plastic electronics applications including OLEDs and organic photovoltaics (OPVs). For applications where surface roughness is not critical, e.g. electrochromic devices or discharge of static electricity, the gold grid/rrP3HT-SWCNT hybrid TCE can be employed

    Solution processed naphthalene diimide derivative as electron transport layers for enhanced brightness and efficient polymer light emitting diodes

    No full text
    Increasing the efficiency and lifetime of polymer light emitting diodes (PLEDs) requires a balanced injection and flow of charges through the device, driving demand for cheap and effective electron transport/hole blocking layers. Some materials, such as conjugated polyelectrolytes, have been identified as potential candidates but the production of these materials requires complex, and hence costly, synthesis routes. We have utilized a soluble small molecule naphthalene diimide derivative (DC18) as a novel electron transport/hole blocking layer in common PLED architectures, and compared its electronic properties to those of the electron transport/hole blocking small molecule bathocuproine (BCP). PLEDs incorporating DC18 as the electron transport layer reduce turn on voltage by 25%; increase brightness over three and a half times; and provide a full five-fold enhancement in efficiencies compared to reference devices. While DC18 has similar properties to the effective conjugated polyelectrolytes used as electron transport layers, it is simpler to synthesise, reducing cost while retaining favourable electron transport properties, and producing a greater degree of efficiency enhancement. The impact on device lifetime is hypothesized to be significant as well, due to the air-stability seen in many naphthalene diimide derivatives

    Silver Grid Transparent Conducting Electrodes for Organic Light Emitting Diodes

    Get PDF
    Polymer organic light emitting diodes (OLEDs) were fabricated using thin silver hexagonal grids replacing indium tin oxide (ITO) as the transparent conducting electrodes (TCE). Previous literature has assumed that thick metal grids (several hundred nanometres thick) with a lower sheet resistance ( 80 %) compared to thinner grids would lead to OLEDs with better performance than when thinner metal grid lines are used. This assumption is critically examined using OLEDs on various metal grids with different thicknesses and studying their performances. The experimental results show that a 20 nm thick silver grid TCE resulted in more efficient OLEDs with higher luminance (10 cd/A and 1460 cd/m2 at 6.5 V) than a 111 nm thick silver grid TCE (5 cd/A and 159 cd/m2 at 6.5 V). Furthermore, the 20 nm thick silver grid OLED has a higher luminous efficiency than the ITO OLED (6 cd/A and 1540 cd/m2 at 6.5 V) at low voltages. The data shows that thinner metal grid TCEs (about 20 nm) make the most efficient OLEDs, contrary to previous expectations

    Silver Grid Transparent Conducting Electrodes for Organic Light Emitting Diodes

    No full text
    Polymer organic light emitting diodes (OLEDs) were fabricated using thin silver hexagonal grids replacing indium tin oxide (ITO) as the transparent conducting electrodes (TCE). Previous literature has assumed that thick metal grids (several hundred nanometres thick) with a lower sheet resistance ( 80 %) compared to thinner grids would lead to OLEDs with better performance than when thinner metal grid lines are used. This assumption is critically examined using OLEDs on various metal grids with different thicknesses and studying their performances. The experimental results show that a 20 nm thick silver grid TCE resulted in more efficient OLEDs with higher luminance (10 cd/A and 1460 cd/m2 at 6.5 V) than a 111 nm thick silver grid TCE (5 cd/A and 159 cd/m2 at 6.5 V). Furthermore, the 20 nm thick silver grid OLED has a higher luminous efficiency than the ITO OLED (6 cd/A and 1540 cd/m2 at 6.5 V) at low voltages. The data shows that thinner metal grid TCEs (about 20 nm) make the most efficient OLEDs, contrary to previous expectations

    Medical simulator with injection device

    Get PDF
    medical simulator 611 comprises a vessel 609 representing a simulated blood vessel. The vessel comprises a simulated vessel wall capable of being punctured by an electrically conductive injection needle 503. The vessel wall comprises a first electrically conductive layer for closing an electric circuit when the first electrically conductive layer is punctured by the electrically conductive injection needle 503. An electric subsystem applies an alternating current trigger voltage to the injection needle 503 when the electric circuit is closed, for triggering a signal source in an injection device 502 connected to the injection needle 503. The electric subsystem is arranged for applying a detection voltage to at least one electrically conductive layer for detecting a closing of the circuit by the injection needle 503. Injection device 502 has a signal source such that an electric circuit comprising the signal source is closed and the signal source is activated when a voltage is applied to the injection needle 50

    Does Electronic Type Matter when Single-Walled Carbon Nanotubes are Used for Electrode Applications?

    Get PDF
    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Single-walled carbon nanotube (SWNT) electrodes that are chemically and mechanically robust are fabricated using a simple drop cast method with thermal annealing and acid treatment. An electronic-type selective decrease in sheet resistance of SWNT electrodes with HNO3 treatment is shown. Semiconducting SWNTs show a significantly higher affinity toward hole doping in comparison to metallic SWNTs; a ≈12-fold and a ≈fivefold drop in sheet resistance, respectively. The results suggest the insignificance of the electronic type of the SWNTs for the film conductivity after hole doping. The SWNT films have been employed as transparent hole extracting electrodes in bulk heterojunction (BHJ) organic photovoltaics. Performances of the devices enlighten the fact that the electrode film morphology dominates over the electronic type of the doped SWNTs with similar sheet resistance and optical transmission. The power conversion efficiency (PCE) of 4.4% for the best performing device is the best carbon nanotube transparent electrode incorporated large area BHJ solar cell reported to date. This PCE is 90% in terms of PCEs achieved using indium tin oxide (ITO) based reference devices with identical film fabrication parameters indicating the potential of the SWNT electrodes as an ITO replacement toward realization of all carbon solar cells. Fabrication of electronic-type separated single-walled carbon nanotube (SWNT) electrodes for organic solar cells, using a simple drop cast method followed by thermal and acid treatment. The thermal and acid treatment processes significantly enhance the conductivity of the SWNT films, enabling the use of the conductivity-enhanced SWNT layers as hole extracting, transparent electrodes in organic bulk heterojunction solar cells

    Does Electronic Type Matter when Single-Walled Carbon Nanotubes are Used for Electrode Applications?

    No full text
    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Single-walled carbon nanotube (SWNT) electrodes that are chemically and mechanically robust are fabricated using a simple drop cast method with thermal annealing and acid treatment. An electronic-type selective decrease in sheet resistance of SWNT electrodes with HNO3 treatment is shown. Semiconducting SWNTs show a significantly higher affinity toward hole doping in comparison to metallic SWNTs; a ≈12-fold and a ≈fivefold drop in sheet resistance, respectively. The results suggest the insignificance of the electronic type of the SWNTs for the film conductivity after hole doping. The SWNT films have been employed as transparent hole extracting electrodes in bulk heterojunction (BHJ) organic photovoltaics. Performances of the devices enlighten the fact that the electrode film morphology dominates over the electronic type of the doped SWNTs with similar sheet resistance and optical transmission. The power conversion efficiency (PCE) of 4.4% for the best performing device is the best carbon nanotube transparent electrode incorporated large area BHJ solar cell reported to date. This PCE is 90% in terms of PCEs achieved using indium tin oxide (ITO) based reference devices with identical film fabrication parameters indicating the potential of the SWNT electrodes as an ITO replacement toward realization of all carbon solar cells. Fabrication of electronic-type separated single-walled carbon nanotube (SWNT) electrodes for organic solar cells, using a simple drop cast method followed by thermal and acid treatment. The thermal and acid treatment processes significantly enhance the conductivity of the SWNT films, enabling the use of the conductivity-enhanced SWNT layers as hole extracting, transparent electrodes in organic bulk heterojunction solar cells
    corecore