644 research outputs found
A longitudinal study of muscle rehabilitation in the lower leg after cast removal using magnetic resonance imaging and strength assessment
Magnetic resonance imaging (MRI) was used to investigate muscle rehabilitation following cast immobilization. The aim was to explore MRI as an imaging biomarker of muscle function. Sixteen patients completed an eight-week rehabilitation programme following six weeks of cast immobilization for an ankle fracture. MRI of the lower leg was performed at two-week intervals for 14 weeks. Total volume and anatomical cross-sectional areas at 70% of the distance from lateral malleolus to tibial tuberosity (ACSA) were measured for tibialis anterior (TA), medial and lateral gastrocnemius (GM and GL) and soleus (SOL). Pennation angle of muscle fascicules was measured at the same position in GM. Fractional fat/water contents and T2 relaxation times before and after exercise were calculated. Strength was measured as maximum isometric torque developed in plantar- and dorsi-flexion. Torque increased by (mean [SD]) 1.10 (0.32) N m day−1 in males, 0.74 (0.43) N m day−1 in females in plantar-flexion (0.9% of final strength per day), and 0.36 (0.15) N m day−1 in males, 0.28 (0.19) N m day−1 in females in dorsi-flexion (1.1% per day). Neither difference between males and females was significant. Volume and ACSA of muscles recovered by week 14 apart from SOL which was still 6.8% smaller (p = 0.006) than the contralateral leg. T2 peaked at the end of the cast period for TA and SOL, and at week 8 for GM before returning to baseline. Pennation angle recovered rapidly following cast removal. Quantitative MRI can generate markers of muscle biomechanics and indicates that many of these return to baseline within eight weeks of remobilization
The origin of defects induced in ultra-pure germanium by Electron Beam Deposition
The creation of point defects in the crystal lattices of various
semiconductors by subthreshold events has been reported on by a number of
groups. These observations have been made in great detail using sensitive
electrical techniques but there is still much that needs to be clarified.
Experiments using Ge and Si were performed that demonstrate that energetic
particles, the products of collisions in the electron beam, were responsible
for the majority of electron-beam deposition (EBD) induced defects in a
two-step energy transfer process. Lowering the number of collisions of these
energetic particles with the semiconductor during metal deposition was
accomplished using a combination of static shields and superior vacuum
resulting in devices with defect concentrations lower than cm, the measurement limit of our deep level transient
spectroscopy (DLTS) system. High energy electrons and photons that samples are
typically exposed to were not influenced by the shields as most of these
particles originate at the metal target thus eliminating these particles as
possible damage causing agents. It remains unclear how packets of energy that
can sometimes be as small of 2eV travel up to a m into the material while
still retaining enough energy, that is, in the order of 1eV, to cause changes
in the crystal. The manipulation of this defect causing phenomenon may hold the
key to developing defect free material for future applications.Comment: 18 pages, 9 figure
Mutations at the same residue (R50) of Kir6.2 (KCNJ11) that cause neonatal diabetes produce different functional effects
Heterozygous mutations in the human Kir6.2 gene (KCNJ11), the pore-forming subunit of the ATP-sensitive K(+) channel (K(ATP) channel), are a common cause of neonatal diabetes. We identified a novel KCNJ11 mutation, R50Q, that causes permanent neonatal diabetes (PNDM) without neurological problems. We investigated the functional effects this mutation and another at the same residue (R50P) that led to PNDM in association with developmental delay. Wild-type or mutant Kir6.2/SUR1 channels were examined by heterologous expression in Xenopus oocytes. Both mutations increased resting whole-cell currents through homomeric and heterozygous K(ATP) channels by reducing channel inhibition by ATP, an effect that was larger in the presence of Mg(2+). However the magnitude of the reduction in ATP sensitivity (and the increase in the whole-cell current) was substantially larger for the R50P mutation. This is consistent with the more severe phenotype. Single-R50P channel kinetics (in the absence of ATP) did not differ from wild type, indicating that the mutation primarily affects ATP binding and/or transduction. This supports the idea that R50 lies in the ATP-binding site of Kir6.2. The sulfonylurea tolbutamide blocked heterozygous R50Q (89%) and R50P (84%) channels only slightly less than wild-type channels (98%), suggesting that sulfonylurea therapy may be of benefit for patients with either mutation
Phonon-assisted radiofrequency absorption by gold nanoparticles resulting in hyperthermia
It is suggested that in gold nanoparticles (GNPs) of about 5 nm sizes used in
the radiofrequency (RF) hyperthermia, an absorption of the RF photon by the
Fermi electron occurs with involvement of the longitudinal acoustic vibrational
mode (LAVM), the dominating one in the distribution of vibrational density of
states (VDOS). This physical mechanism helps to explain two observed phenomena:
the size dependence of the heating rate (HR) in GNPs and reduced heat
production in aggregated GNPs. The argumentation proceeds within the
one-electron approximation, taking into account the discretenesses of energies
and momenta of both electrons and LAVMs. The heating of GNPs is thought to
consist of two consecutive processes: first, the Fermi electron absorbs
simultaneously the RF photon and the LAVM available in the GNP; hereafter the
excited electron gets relaxed within the GNP's boundary, exciting a LAVM with
the energy higher than that of the previously absorbed LAVM. GNPs containing
the Ta and/or Fe impurities are proposed for the RF hyperthermia as promising
heaters with enhanced HRs, and GNPs with rare-earth impurity atoms are also
brought into consideration. It is shown why the maximum HR values should be
expected in GNPs with about 5-7 nm size.Comment: proceedings at the NATO Advanced Research workshop FANEM-2015 (Minsk,
May 25-27, 2015). To be published in the final form in: "Fundamental and
Applied NanoElectroMagnetics" (Springer Science + Business Media B.V.
Photoswitchable diacylglycerols enable optical control of protein kinase C.
Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling
The systematic guideline review: method, rationale, and test on chronic heart failure
Background: Evidence-based guidelines have the potential to improve healthcare. However, their de-novo-development requires substantial resources-especially for complex conditions, and adaptation may be biased by contextually influenced recommendations in source guidelines. In this paper we describe a new approach to guideline development-the systematic guideline review method (SGR), and its application in the development of an evidence-based guideline for family physicians on chronic heart failure (CHF).
Methods: A systematic search for guidelines was carried out. Evidence-based guidelines on CHF management in adults in ambulatory care published in English or German between the years 2000 and 2004 were included. Guidelines on acute or right heart failure were excluded. Eligibility was assessed by two reviewers, methodological quality of selected guidelines was appraised using the AGREE instrument, and a framework of relevant clinical questions for diagnostics and treatment was derived. Data were extracted into evidence tables, systematically compared by means of a consistency analysis and synthesized in a preliminary draft. Most relevant primary sources were re-assessed to verify the cited evidence. Evidence and recommendations were summarized in a draft guideline.
Results: Of 16 included guidelines five were of good quality. A total of 35 recommendations were systematically compared: 25/35 were consistent, 9/35 inconsistent, and 1/35 un-rateable (derived from a single guideline). Of the 25 consistencies, 14 were based on consensus, seven on evidence and four differed in grading. Major inconsistencies were found in 3/9 of the inconsistent recommendations. We re-evaluated the evidence for 17 recommendations (evidence-based, differing evidence levels and minor inconsistencies) - the majority was congruent. Incongruity was found where the stated evidence could not be verified in the cited primary sources, or where the evaluation in the source guidelines focused on treatment benefits and underestimated the risks. The draft guideline was completed in 8.5 man-months. The main limitation to this study was the lack of a second reviewer.
Conclusion: The systematic guideline review including framework development, consistency analysis and validation is an effective, valid, and resource saving-approach to the development of evidence-based guidelines
Tools and techniques for solvent selection: green solvent selection guides
Driven by legislation and evolving attitudes towards environmental issues, establishing green solvents for extractions, separations, formulations and reaction chemistry has become an increasingly important area of research. Several general purpose solvent selection guides have now been published with the aim to reduce use of the most hazardous solvents. This review serves the purpose of explaining the role of these guides, highlighting their similarities and differences. How they can be used most effectively to enhance the greenness of chemical processes, particularly in laboratory organic synthesis and the pharmaceutical industry, is addressed in detail
Recommended from our members
Efficient, non‐toxic anion transport by synthetic carriers in cells and epithelia
Transmembrane anion transporters (anionophores) have potential for new modes of biological activity, including therapeutic applications. In particular they might replace the activity of defective anion channels in conditions such as cystic fibrosis. However, data on the biological effects of anionophores are scarce, and it remains uncertain whether such molecules are fundamentally toxic. Here, we report a biological study of an extensive series of powerful anion carriers. Fifteen anionophores were assayed in single cells by monitoring anion transport in real time through fluorescence emission from halide-sensitive yellow fluorescent protein. A bis-(p-nitrophenyl)ureidodecalin shows especially promising activity, including deliverability, potency and persistence. Electrophysiological tests show strong effects in epithelia, close to those of natural anion channels. Toxicity assays yield negative results in three cell lines, suggesting that promotion of anion transport may not be deleterious to cells. We therefore conclude that synthetic anion carriers are realistic candidates for further investigation as treatments for cystic fibrosis.info:eu-repo/semantics/publishe
Permanent neonatal diabetes by a new mutation in KCNJ11: unsuccessful switch to sulfonylurea
A Kir6.2 mutation causing severe functional effects in vitro produces neonatal diabetes without the expected neurological complications.
PublishedCase ReportsJournal ArticleResearch Support, Non-U.S. Gov'tAIMS/HYPOTHESIS: Heterozygous activating mutations in the pancreatic ATP-sensitive K+ channel cause permanent neonatal diabetes mellitus (PNDM). This results from a decrease in the ability of ATP to close the channel, which thereby suppresses insulin secretion. PNDM mutations that cause a severe reduction in ATP inhibition may produce additional symptoms such as developmental delay and epilepsy. We identified a heterozygous mutation (L164P) in the pore-forming (Kir6.2) subunit of the channel in three unrelated patients and examined its functional effects. METHODS: The patients (currently aged 2, 8 and 20 years) developed diabetes shortly after birth. The two younger patients attempted transfer to sulfonylurea therapy but were unsuccessful (up to 1.1 mg kg(-1) day(-1)). They remain insulin dependent. None of the patients displayed neurological symptoms. Functional properties of wild-type and mutant channels were examined by electrophysiology in Xenopus oocytes. RESULTS: Heterozygous (het) and homozygous L164P K(ATP) channels showed a marked reduction in channel inhibition by ATP. Consistent with its predicted location within the pore, L164P enhanced the channel open state, which explains the reduction in ATP sensitivity. HetL164P currents exhibited greatly increased whole-cell currents that were unaffected by sulfonylureas. This explains the inability of sulfonylureas to ameliorate the diabetes of affected patients. CONCLUSIONS/INTERPRETATION: Our results provide the first demonstration that mutations such as L164P, which produce a severe reduction in ATP sensitivity, do not inevitably cause developmental delay or neurological problems. However, the neonatal diabetes of these patients is unresponsive to sulfonylurea therapy. Functional analysis of PNDM mutations can predict the sulfonylurea response.We thank the patients and their referring clinicians. Financial support was provided by the Wellcome Trust (F. M. Ashcroft, A. T. Hattersley), the Royal Society (F. M. Ashcroft), the European Union (Integrated Project EuroDia LSHM-CT-2006–518153 in the Framework Programme 6 [FP6]) of the European-Community (F. M. Ashcroft, A. T. Hattersley), the Sir Graham Wilkins studentship (S. E. Flanagan) and research grants from the Slovak Research and Development Agency (51–014205; I. Klimes) and Slovak Ministry of Health (MZ.2005/15-NEDU-01; I. Klimes). P. Tammaro holds a Junior Research Fellowship at the Wolfson College, B. Zadek holds an OXION scholarship, A. T. Hattersley is a Wellcome Trust Research Leave Fellow and F. M. Ashcroft is a Royal Society Research Professor
- …
