7 research outputs found

    The evolution of robust development and homeostasis in artificial organisms

    Get PDF
    During embryogenesis, multicellular animals are shaped via cell proliferation, cell rearrangement, and apoptosis. At the end of development, tissue architecture is then maintained through balanced rates of cell proliferation and loss. Here, we take an in silico approach to look for generic systems features of morphogenesis in multicellular animals that arise as a consequence of the evolution of development. Using artificial evolution, we evolved cellular automata-based digital organisms that have distinct embryonic and homeostatic phases of development. Although these evolved organisms use a variety of strategies to maintain their form over time, organisms of different types were all found to rapidly recover from environmental damage in the form of wounds. This regenerative response was most robust in an organism with a stratified tissue-like architecture. An evolutionary analysis revealed that evolution itself contributed to the ability of this organism to maintain its form in the face of genetic and environmental perturbation, confirming the results of previous studies. In addition, the exceptional robustness of this organism to surface injury was found to result from an upward flux of cells, driven in part by cell divisions with a stable niche at the tissue base. Given the general nature of the model, our results lead us to suggest that many of the robust systems properties observed in real organisms, including scar-free wound-healing in well-protected embryos and the layered tissue architecture of regenerating epithelial tissues, may be by-products of the evolution of morphogenesis, rather than the direct result of selectio

    Cell wall swelling, fracture mode, and the mechanical properties of cherry fruit skins are closely related

    Get PDF
    Main conclusion: Cell wall swelling, fracture mode (along the middle lamellae vs. across cell walls), stiffness, and pressure at fracture of the sweet cherry fruit skin are closely related. Skin cracking is a common phenomenon in many crops bearing fleshy fruit. The objectives were to investigate relationships between the mode of fracture, the extent of cell wall swelling, and the mechanical properties of the fruit skin using sweet cherry (Prunus avium) as a model. Cracking was induced by incubating whole fruit in deionised water or by fracturing exocarp segments (ESs) in biaxial tensile tests. The fracture mode of epidermal cells was investigated by light microscopy. In biaxial tensile tests, the anticlinal cell walls of the ES fractured predominantly across the cell walls (rather than along) and showed no cell wall swelling. In contrast, fruit incubated in water fractured predominantly along the anticlinal epidermal cell walls and the cell walls were swollen. Swelling of cell walls also occurred when ESs were incubated in malic acid, in hypertonic solutions of sucrose, or in water. Compared to the untreated controls, these treatments resulted in more frequent fractures along the cell walls, lower pressures at fracture (pfracture), and lower moduli of elasticity (E, i.e., less stiff). Conversely, compared to the untreated controls, incubating the ES in CaCl2 and in high concentrations of ethanol resulted in thinner cell walls, in less frequent fractures along the cell walls, higher E and pfracture. Our study demonstrates that fracture mode, stiffness, and pressure at fracture are closely related to cell wall swelling. A number of other factors, including cultivar, ripening stage, turgor, CaCl2, and malic acid, exert their effects only indirectly, i.e., by affecting cell wall swelling. The final publication is available at Springer via http://dx.doi.org/10.1007/s00425-016-2639-7DF

    Laser spectroscopy for breath analysis: towards clinical implementation

    Get PDF
    International audienc

    Laser spectroscopy for breath analysis: towards clinical implementation

    No full text

    Methods for detection of cytosine and thymine modifications in DNA

    No full text

    Pesticides

    No full text
    corecore