194 research outputs found

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Tractography of developing white matter of the internal capsule and corpus callosum in very preterm infants

    Get PDF
    To investigate in preterm infants associations between Diffusion Tensor Imaging (DTI) parameters of the posterior limb of the internal capsule (PLIC) and corpus callosum (CC) and age, white matter (WM) injury and clinical factors. In 84 preterm infants DTI was performed between 40-62 weeks postmenstrual age on 3 T MR. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) values and fibre lengths through the PLIC and the genu and splenium were determined. WM injury was categorised as normal/mildly, moderately and severely abnormal. Associations between DTI parameters and age, WM injury and clinical factors were analysed. A positive association existed between FA and age at imaging for fibres through the PLIC (r = 0.48 p < 0.001) and splenium (r = 0.24 p < 0.01). A negative association existed between ADC and age at imaging for fibres through the PLIC (r = -0.65 p < 0.001), splenium (r = -0.35 p < 0.001) and genu (r = -0.53 p < 0.001). No association was found between DTI parameters and gestational age, degree of WM injury or categorical clinical factors. These results indicate that in our cohort of very preterm infants, at this young age, the development of the PLIC and CC is ongoing and independent of the degree of prematurity or WM injury.Neuro Imaging Researc

    Eosinophils in glioblastoma biology

    Get PDF
    Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The development of this malignant glial lesion involves a multi-faceted process that results in a loss of genetic or epigenetic gene control, un-regulated cell growth, and immune tolerance. Of interest, atopic diseases are characterized by a lack of immune tolerance and are inversely associated with glioma risk. One cell type that is an established effector cell in the pathobiology of atopic disease is the eosinophil. In response to various stimuli, the eosinophil is able to produce cytotoxic granules, neuromediators, and pro-inflammatory cytokines as well as pro-fibrotic and angiogenic factors involved in pathogen clearance and tissue remodeling and repair. These various biological properties reveal that the eosinophil is a key immunoregulatory cell capable of influencing the activity of both innate and adaptive immune responses. Of central importance to this report is the observation that eosinophil migration to the brain occurs in response to traumatic brain injury and following certain immunotherapeutic treatments for GBM. Although eosinophils have been identified in various central nervous system pathologies, and are known to operate in wound/repair and tumorstatic models, the potential roles of eosinophils in GBM development and the tumor immunological response are only beginning to be recognized and are therefore the subject of the present review

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+

    Get PDF
    Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]&lt;2.20(2.56) and Γ[Ξb(6333)0]&lt;1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances

    A search for rare B → Dμ+μ− decays

    Get PDF
    A search for rare B→Dμ+μ− decays is performed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb−1. No significant signals are observed in the non-resonant μ+μ− modes, and upper limits of B(B0→D ̄ ̄ ̄ ̄0μ+μ−)&lt;5.1×10−8, B(B+→D+sμ+μ−)&lt;3.2×10−8, B(B0s→D ̄ ̄ ̄ ̄0μ+μ−)&lt;1.6×10−7 and fc/fu⋅B(B+c→D+sμ+μ−)&lt;9.6×10−8 are set at the 95\% confidence level, where fc and fu are the fragmentation fractions of a B meson with a c and u quark respectively in proton-proton collisions. Each result is either the first such measurement or an improvement by three orders of magnitude on an existing limit. Separate upper limits are calculated when the muon pair originates from a J/ψ→μ+μ− decay. The branching fraction of B+c→D+sJ/ψ multiplied by the fragmentation-fraction ratio is measured to be fc/fu⋅B(B+c→D+sJ/ψ)=(1.63±0.15±0.13)×10−5, where the first uncertainty is statistical and the second systematic

    The role of reactive oxygen species in adipogenic differentiation

    Get PDF
    Interest in reactive oxygen species and adipocyte differentiation/adipose tissue function is steadily increasing. This is due in part to a search for alternative avenues for combating obesity, which results from the excess accumulation of adipose tissue. Obesity is a major risk factor for complex disorders such as cancer, type 2 diabetes, and cardiovascular diseases. The ability of mesenchymal stromal/stem cells (MSCs) to differentiate into adipocytes is often used as a model for studying adipogenesis in vitro. A key focus is the effect of both intra- and extracellular reactive oxygen species (ROS) on adipogenesis. The consensus from the majority of studies is that ROS, irrespective of the source, promote adipogenesis. The effect of ROS on adipogenesis is suppressed by antioxidants or ROS scavengers. Reactive oxygen species are generated during the process of adipocyte differentiation as well as by other cell metabolic processes. Despite many studies in this field, it is still not possible to state with certainty whether ROS measured during adipocyte differentiation are a cause or consequence of this process. In addition, it is still unclear what the exact sources are of the ROS that initiate and/or drive adipogenic differentiation in MSCs in vivo. This review provides an overview of our understanding of the role of ROS in adipocyte differentiation as well as how certain ROS scavengers and antioxidants might affect this process.The South African Medical Research Council in terms of the SAMRC's Flagship Award Project SAMRC-RFA-UFSP-01-2013/STEM CELLS, the SAMRC Extramural Unit for Stem Cell Research and Therapy and the Institute for Cellular and Molecular Medicine of the University of Pretoria.http://www.springer.comseries/5584hj2019GeneticsImmunologyOral Pathology and Oral Biolog
    corecore