8 research outputs found
Optimal foraging and community structure: implications for a guild of generalist grassland herbivores
A particular linear programming model is constructed to predict the diets of each of 14 species of generalist herbivores at the National Bison Range, Montana. The herbivores have body masses ranging over seven orders of magnitude and belonging to two major taxa: insects and mammals. The linear programming model has three feeding constraints: digestive capacity, feeding time and energy requirements. A foraging strategy that maximizes daily energy intake agrees very well with the observed diets. Body size appears to be an underlying determinant of the foraging parameters leading to diet selection. Species that possess digestive capacity and feeding time constraints which approach each other in magnitude have the most generalized diets. The degree that the linear programming models change their diet predictions with a given percent change in parameter values (sensitivity) may reflect the observed ability of the species to vary their diets. In particular, the species which show the most diet variability are those whose diets tend to be balanced between monocots and dicots. The community-ecological parameters of herbivore body-size ranges and species number can possibly be related to foraging behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47765/1/442_2004_Article_BF00377109.pd
Smoking Restores Impaired LTD-Like Plasticity in Schizophrenia: a Transcranial Direct Current Stimulation Study
Impaired neuroplastic responses following noninvasive brain stimulation have been reported repeatedly in schizophrenia patients. These findings have been associated with deficits in GABAergic, glutamatergic, and cholinergic neurotransmission. Although various neurophysiological studies have indicated a relationship between nicotine and neuroplasticity in healthy individuals, the present study is the first investigation into the impact of nicotine on LTD-like plasticity in patients with schizophrenia. Cortical excitability and cortical plasticity were explored in 30 schizophrenia patients (17 smoker, 13 nonsmoker) and 45 healthy controls (13 smoker, 32 nonsmoker) by using single-pulse transcranial magnetic stimulation (TMS) before and following cathodal transcranial direct current stimulation (tDCS) applied to the left primary motor cortex. Our analysis revealed abolished LTD-like plasticity in nonsmoking schizophrenia patients. However, these plasticity deficits were not present in smoking schizophrenia patients. In healthy controls, significant MEP reductions following cathodal tDCS were observed in nonsmoking individuals, but only trend-level reductions in smokers. In smoking schizophrenia patients, the severity of negative symptoms correlated positively with reduced neuroplasticity, whereas nonsmoking patients displayed the opposite effect. Taken together, the data of our study support the notion of an association between chronic smoking and the restitution of impaired LTD-like plasticity in schizophrenia patients. Although replication and further research are needed to better understand this relationship, our findings indicate that nicotine intake might stabilize the impaired inhibition–facilitation balance in the schizophrenic brain through a complex interaction between cortical plasticity, and GABAergic and cholinergic neurotransmission, and might explain the reduced prevalence of negative symptoms in this population
Molecular, Neuronal, and Behavioral Effects of Ethanol and Nicotine Interactions
Ethanol and nicotine can modulate the activity of several neurotransmitter systems and signalling pathways. Interactions between ethanol and nicotine can also occur via common molecular targets including nicotinic acetylcholine receptors (nAChRs). These effects can induce molecular and synaptic adaptations that over time, are consolidated in brain circuits that reinforce drug-seeking behavior, contribute to the development of withdrawal symptoms during abstinence and increase the susceptibility to relapse. This chapter will discuss the acute and chronic effects of ethanol and nicotine within the mesolimbic reward pathway and brain circuits involved in learning, memory, and withdrawal. Individual and common molecular targets of ethanol and nicotine within these circuits are also discussed. Finally, we review studies that have identified potential molecular and neuronal processes underlying the high incidence of ethanol and nicotine co-use that may contribute to the development of ethanol and nicotine co-addiction
