8 research outputs found
Gene Expression Signature in Peripheral Blood Detects Thoracic Aortic Aneurysm
BACKGROUND: Thoracic aortic aneurysm (TAA) is usually asymptomatic and associated with high mortality. Adverse clinical outcome of TAA is preventable by elective surgical repair; however, identifying at-risk individuals is difficult. We hypothesized that gene expression patterns in peripheral blood cells may correlate with TAA disease status. Our goal was to identify a distinct gene expression signature in peripheral blood that may identify individuals at risk for TAA. METHODS AND FINDINGS: Whole genome gene expression profiles from 94 peripheral blood samples (collected from 58 individuals with TAA and 36 controls) were analyzed. Significance Analysis of Microarray (SAM) identified potential signature genes characterizing TAA vs. normal, ascending vs. descending TAA, and sporadic vs. familial TAA. Using a training set containing 36 TAA patients and 25 controls, a 41-gene classification model was constructed for detecting TAA status and an overall accuracy of 78+/-6% was achieved. Testing this classifier on an independent validation set containing 22 TAA samples and 11 controls yielded an overall classification accuracy of 78%. These 41 classifier genes were further validated by TaqMan real-time PCR assays. Classification based on the TaqMan data replicated the microarray results and achieved 80% classification accuracy on the testing set. CONCLUSIONS: This study identified informative gene expression signatures in peripheral blood cells that can characterize TAA status and subtypes of TAA. Moreover, a 41-gene classifier based on expression signature can identify TAA patients with high accuracy. The transcriptional programs in peripheral blood leading to the identification of these markers also provide insights into the mechanism of development of aortic aneurysms and highlight potential targets for therapeutic intervention. The classifier genes identified in this study, and validated by TaqMan real-time PCR, define a set of promising potential diagnostic markers, setting the stage for a blood-based gene expression test to facilitate early detection of TAA
Multi-criteria decision analysis of waste-to-energy technologies for municipal solid waste management in Sultanate of Oman
The Sultanate of Oman faces challenges, like rapid growth of waste generation, which calls for an optimum waste management strategy. Oman has witnessed the production of 1.5m t of municipal solid waste in 2012, which is expected to elevate to 1.89m t in 2030. This rapid increase needs to be tackled to reduce the generation rates along with the environmental impacts. Currently, there are no treatment facilities in Oman other than limited recycling, and therefore dumping waste into the landfill is the only ultimate way to dispose solid waste. Hence, this study is an initiative to improve the waste managing system in Oman by proposing optimum waste-to-energy technology using an analytical hierarchy process, manually and through expect choice software as well. In the present study, the identified important parameters were considered in an analytical hierarchy process model to rank the waste-to-energy technology alternatives. Based on the survey conducted, the most important criteria were environmental and economic, with the local priority vector of 0.400 and 0.277, respectively. This research concludes that the most suitable waste-to-energy technology for Oman, on the basis of the identified criteria, is anaerobic digestion followed by fermentation and incineration, which will help to reduce the amount of waste, greenhouse gas emissions and developing and maintaining costs of landfills. </jats:p
Economic and environmental benefits of landfill gas utilisation in Oman
Municipal solid waste disposed in landfill sites decomposes under anaerobic conditions and produces so-called landfill-gas, which contains 30%–40% of carbon dioxide (CO2) and 50%–60% of methane (CH4). Methane has the potential of causing global warming 25 times more than CO2. Therefore, migration of landfill-gas from landfills to the surrounding environment can potentially affect human life and environment. Thus, this research aims to determine municipal solid waste generation in Oman over the years 1971–2030, to quantify annual CH4 emissions inventory that resulted from this waste over the same period of time, and to determine the economic and environmental benefits of capturing the CH4 gas for energy production. It is found that cumulative municipal solid waste landfilled in Oman reaches 3089 Giga gram (Gg) in the year 2030, of which approximately 85 Gg of CH4 emissions are produced in the year 2030. The study also found that capturing CH4 emissions between the years 2016 and 2030 could attract revenues of up to US291 million from the carbon reduction and electricity generation, simultaneously. It is concluded that CH4 emissions from solid waste in Oman increases enormously with time, and capture of this gas for energy production could provide a sustainable waste management solution in Oman. </jats:p
