974 research outputs found

    Male-killing bacteria in insects: mechanisms, incidence and implications

    Get PDF
    Bacteria that are vertically transmitted through female hosts and kill male hosts that inherit them were first recorded in insects during the 1950s. Recent studies have shown these "male-killers" to be diverse and have led to a reappraisal of the biology of many groups of bacteria. Rickettsia, for instance, have been regarded as human pathogens transmitted by arthropods. The finding of a male-killing Rickettsia obligately associated with an insect suggests that the genus' members may be primarily associated with arthropods and are only sometimes pathogens of vertebrates. We examined both how killing of male hosts affects the dynamics of inherited bacteria and how male-killing bacteria affect their host populations. Finally, we assessed the potential use of these microorganisms in the control of insect populations

    Flies on the move: an inherited virus mirrors Drosophila melanogaster's elusive ecology and demography.

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tCopyright © 2014 John Wiley & Sons LtdThis is the accepted version of the following article: Wilfert, L. and Jiggins, F. M. (2014), Flies on the move: an inherited virus mirrors Drosophila melanogaster's elusive ecology and demography. Molecular Ecology, 23: 2093–2104. doi: 10.1111/mec.12709, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/mec.12709/abstractVertically transmitted parasites rely on their host's reproduction for their transmission, leading to the evolutionary histories of both parties being intimately entwined. Parasites can thus serve as a population genetic magnifying glass for their host's demographic history. Here, we study the fruitfly Drosophila melanogaster's vertically transmitted sigma virus DMelSV. The virus has a high mutation rate and low effective population size, allowing us to reconstruct at a fine scale how the combined forces of the movement of flies and selection on the virus have shaped its migration patterns. We found that the virus is likely to have spread to Europe from Africa, mirroring the colonization route of Drosophila. The North American DMelSV population appears to be the result of a recent single immigration from Europe, invading together with its host in the late 19th century. Across Europe, DMelSV migration rates are low and populations are highly genetically structured, likely reflecting limited fly movement. Despite being intolerant of extreme cold, viral diversity suggests that fly populations can persist in harsh continental climates and that recolonization from the warmer south plays a minor role. In conclusion, studying DMelSV can provide insights into the poorly understood ecology of D. melanogaster, one of the best-studied organisms in biology.Leverhulme TrustRoyal Society University Research Fellowshi

    Wolbachia and DNA barcoding insects: patterns, potential and problems

    Get PDF
    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region

    The evolution of transmission mode

    Get PDF
    This article reviews research on the evolutionary mechanisms leading to different transmission modes. Such modes are often under genetic control of the host or the pathogen, and often in conflict with each other via trade-offs. Transmission modes may vary among pathogen strains and among host populations. Evolutionary changes in transmission mode have been inferred through experimental and phylogenetic studies, including changes in transmission associated with host-shifts and with evolution of the unusually complex life cycles of many parasites. Understanding the forces that determine the evolution of particular transmission modes presents a fascinating medley of problems for which there is a lack of good data and often a lack of conceptual understanding or appropriate methodologies. Our best information comes from studies that have been focused on the vertical vs. horizontal transmission dichotomy. With other kinds of transitions, theoretical approaches combining epidemiology and population genetics are providing guidelines for determining when and how rapidly new transmission modes may evolve, but these are still in need of empirical investigation and application to particular cases. Obtaining such knowledge is a matter of urgency in relation to extant disease threats

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares

    Get PDF
    Snowshoe hares (Lepus americanus) maintain seasonal camouflage by molting to a white winter coat, but some hares remain brown during the winter in regions with low snow cover. We show that cis-regulatory variation controlling seasonal expression of the Agouti gene underlies this adaptive winter camouflage polymorphism. Genetic variation at Agouti clustered by winter coat color across multiple hare and jackrabbit species, revealing a history of recurrent interspecific gene flow. Brown winter coats in snowshoe hares likely originated from an introgressed black-tailed jackrabbit allele that has swept to high frequency in mild winter environments. These discoveries show that introgression of genetic variants that underlie key ecological traits can seed past and ongoing adaptation to rapidly changing environments. (c) The Authors, Some Rights Reserved

    Wolbachia in butterflies and moths: geographic structure in infection frequency.

    Get PDF
    INTRODUCTION: Butterflies and moths (Lepidoptera) constitute one of the most diverse insect orders, and play an important role in ecosystem function. However, little is known in terms of their bacterial communities. Wolbachia, perhaps the most common and widespread intracellular bacterium on Earth, can manipulate the physiology and reproduction of its hosts, and is transmitted vertically from mother to offspring, or sometimes horizontally between species. While its role in some hosts has been studied extensively, its incidence across Lepidoptera is poorly understood. A recent analysis using a beta-binomial model to infer the between-species distribution of prevalence estimated that approximately 40 % of arthropod species are infected with Wolbachia, but particular taxonomic groups and ecological niches seem to display substantially higher or lower incidences. In this study, we took an initial step and applied a similar, maximum likelihood approach to 300 species of Lepidoptera (7604 individuals from 660 populations) belonging to 17 families and 10 superfamilies, and sampled from 36 countries, representing all continents excluding Antarctica. RESULTS: Approximately a quarter to a third of individuals appear to be infected with Wolbachia, and around 80 % of Lepidoptera species are infected at a non-negligible frequency. This incidence estimate is very high compared to arthropods in general. Wolbachia infection in Lepidoptera is shown to vary between families, but there is no evidence for closely related groups to show similar infection levels. True butterflies (Papilionoidea) are overrepresented in our data, however, our estimates show this group can be taken as a representative for the other major lepidopteran superfamilies. We also show substantial variation in infection level according to geography - closer locations tend to show similar infection levels. We further show that variation in geography is due to a latitudinal gradient in Wolbachia infection, with lower frequencies towards higher latitudes. CONCLUSIONS: Our comprehensive survey of Wolbachia infection in Lepidoptera suggests that infection incidence is very high, and provides evidence that climate and geography are strong predictors of infection frequency.We thank the McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History for their continued support. This study was supported by the University of Florida Research Opportunity Seed Fund (ROSF) and the National Science Foundation grant number DEB-1354585 to AYK.This is the final published version. It first appeared at http://link.springer.com/article/10.1186%2Fs12983-015-0107-z
    corecore