380 research outputs found
Decision for reconstructive interventions of the upper limb in individuals with tetraplegia: the effect of treatment characteristics
Objective: To determine the effect of treatment characteristics on the\ud
decision for reconstructive interventions for the upper extremities (UE) in\ud
subjects with tetraplegia. - \ud
Setting: Seven specialized spinal cord injury centres in the Netherlands. - \ud
Method: Treatment characteristics for UE reconstructive interventions were\ud
determined. Conjoint analysis (CA) was used to determine the contribution\ud
and the relative importance of the treatment characteristics on the decision\ud
for therapy. Therefore, a number of different treatment scenarios using these\ud
characteristics were established. Different pairs of scenarios were presented\ud
to subjects who were asked to choose the preferred scenario of each set. - \ud
Results: forty nine subjects with tetraplegia with a stable C5, C6 or C7\ud
lesion were selected. All treatment characteristics significantly influenced\ud
the choice for treatment. Relative importance of treatment characteristics\ud
were: intervention type (surgery or surgery with FES implant) 13%, number\ud
of operations 15%, in patient rehabilitation period 22%, ambulant\ud
rehabilitation period 9%, complication rate 15%, improvement of elbow\ud
function 10%, improvement of hand function 15%. In deciding for therapy\ud
40% of the subjects focused on one characteristic. - \ud
Conclusion: CA is applicable in Spinal Cord Injury medicine to study the\ud
effect of health outcomes and non-health outcomes on the decision for\ud
treatment. Non-health outcomes which relate to the intensity of treatment\ud
are equally important or even more important than functional outcome in the\ud
decision for reconstructive UE surgery in subjects with tetraplegia
Bayesian modeling of recombination events in bacterial populations
Background: We consider the discovery of recombinant segments jointly with their origins within multilocus DNA sequences from bacteria representing heterogeneous populations of fairly closely related species. The currently available methods for recombination detection capable of probabilistic characterization of uncertainty have a limited applicability in practice as the number of
strains in a data set increases.
Results: We introduce a Bayesian spatial structural model representing the continuum of origins over sites within the observed sequences, including a probabilistic characterization of uncertainty related to the origin of any particular site. To enable a statistically accurate and practically feasible approach to the analysis of large-scale data sets representing a single genus, we have developed a novel software tool (BRAT, Bayesian Recombination Tracker) implementing the model and the
corresponding learning algorithm, which is capable of identifying the posterior optimal structure and to estimate the marginal posterior probabilities of putative origins over the sites.
Conclusion: A multitude of challenging simulation scenarios and an analysis of real data from seven
housekeeping genes of 120 strains of genus Burkholderia are used to illustrate the possibilities
offered by our approach. The software is freely available for download at URL http://web.abo.fi/fak/
mnf//mate/jc/software/brat.html
Physical fitness in people with a spinal cord injury: the association with complications and duration of rehabilitation.
Objective: To assess the association between physical fitness and its recovery over time on the one hand, and complications and duration of phases of rehabilitation on the other. Design and setting: Prospective cohort study at eight rehabilitation centres. Subjects: People with a spinal cord injury were assessed four times: at the start of active rehabilitation (n = 110), three months later (n = 92), at discharge (n = 137) and a year after discharge from inpatient rehabilitation (n = 91). Main measures: Physical fitness was defined as aerobic capacity, determined at each occasion by the peak oxygen uptake (peak V
Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions
The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions
The effect of extrinsic mortality on genome size evolution in prokaryotes
Mortality has a significant role in prokaryotic ecology and evolution, yet the impact of variations in extrinsic mortality on prokaryotic genome evolution has received little attention. We used both mathematical and agent-based models to reveal how variations in extrinsic mortality affect prokaryotic genome evolution. Our results suggest that the genome size of bacteria increases with increased mortality. A high extrinsic mortality increases the pool of free resources and shortens life expectancy, which selects for faster reproduction, a phenotype we called ‘scramblers’. This phenotype is realised by the expansion of gene families involved in nutrient acquisition and metabolism. In contrast, a low mortality rate increases an individual’s life expectancy, which results in natural selection favouring tolerance to starvation when conditions are unfavourable. This leads to the evolution of small, streamlined genomes (‘stayers’). Our models predict that large genomes, gene family expansion and horizontal gene transfer should be observed in prokaryotes occupying ecosystems exposed to high abiotic stress, as well as those under strong predator- and/or pathogen-mediated selection. A comparison of genome size of cyanobacteria in relatively stable marine versus more turbulent freshwater environments corroborates our predictions, although other factors between these environments could also be responsible
Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress
Cytogerontology, the science of cellular ageing, originated in 1881 with the prediction by August Weismann that the somatic cells of higher animals have limited division potential. Weismann's prediction was derived by considering the role of natural selection in regulating the duration of an organism's life. For various reasons, Weismann's ideas on ageing fell into neglect following his death in 1914, and cytogerontology has only reappeared as a major research area following the demonstration by Hayflick and Moorhead in the early 1960s that diploid human fibroblasts are restricted to a finite number of divisions in vitro.
In this review we give a detailed account of Weismann's theory, and we reveal that his ideas were both more extensive in their scope and more pertinent to current research than is generally recognised. We also appraise the progress which has been made over the past hundred years in investigating the causes of ageing, with particular emphasis being given to (i) the evolution of ageing, and (ii) ageing at the cellular level. We critically assess the current state of knowledge in these areas and recommend a series of points as primary targets for future research
Comparison between dopaminergic agents and physical exercise as treatment for periodic limb movements in patients with spinal cord injury
Study design: Randomized controlled trial of physical exercise and dopaminergic agonist in persons with spinal cord injury and periodic leg movement (PLM).Objective: the objective of the present study was to compare the effectiveness of physical exercise and of a dopaminergic agonist in reducing the frequency of PLM.Setting: Centro de Estudos em Psicobiologia e Exercicio. Universidade Federal de São Paulo, Brazil.Methods: A total of 13 volunteers (mean age: 31.6 +/- 8.3 years) received L-DOPA ( 200 mg) and benserazide ( 50 mg) 1 h before sleeping time for 30 days and were then submitted to a physical exercise program on a manual bicycle ergometer for 45 days ( 3 times a week).Results: Both L-DOPA administration (35.11 - 19.87 PLM/h, P<0.03) and physical exercise (35.11 - 18.53 PLM/h, P<0.012) significantly reduced PLM; however, no significant difference was observed between the two types of treatment.Conclusions: the two types of treatment were found to be effective in the reduction of PLM; however, physical exercise is indicated as the first treatment approach, while dopaminergic agonists or other drugs should only be recommended for patients who do not respond to this type of treatment.UNIFESP, Dept Psychobiol, BR-04020060 São Paulo, BrazilUNIFESP, Dept Psychobiol, BR-04020060 São Paulo, BrazilWeb of Scienc
Toxoplasma gondii-Induced Activation of EGFR Prevents Autophagy Protein-Mediated Killing of the Parasite
Toxoplasma gondii resides in an intracellular compartment (parasitophorous vacuole) that excludes transmembrane molecules required for endosome-lysosome recruitment. Thus, the parasite survives by avoiding lysosomal degradation. However, autophagy can re-route the parasitophorous vacuole to the lysosomes and cause parasite killing. This raises the possibility that T. gondii may deploy a strategy to prevent autophagic targeting to maintain the non-fusogenic nature of the vacuole. We report that T. gondii activated EGFR in endothelial cells, retinal pigment epithelial cells and microglia. Blockade of EGFR or its downstream molecule, Akt, caused targeting of the parasite by LC3(+) structures, vacuole-lysosomal fusion, lysosomal degradation and killing of the parasite that were dependent on the autophagy proteins Atg7 and Beclin 1. Disassembly of GPCR or inhibition of metalloproteinases did not prevent EGFR-Akt activation. T. gondii micronemal proteins (MICs) containing EGF domains (EGF-MICs; MIC3 and MIC6) appeared to promote EGFR activation. Parasites defective in EGF-MICs (MIC1 ko, deficient in MIC1 and secretion of MIC6; MIC3 ko, deficient in MIC3; and MIC1-3 ko, deficient in MIC1, MIC3 and secretion of MIC6) caused impaired EGFR-Akt activation and recombinant EGF-MICs (MIC3 and MIC6) caused EGFR-Akt activation. In cells treated with autophagy stimulators (CD154, rapamycin) EGFR signaling inhibited LC3 accumulation around the parasite. Moreover, increased LC3 accumulation and parasite killing were noted in CD154-activated cells infected with MIC1-3 ko parasites. Finally, recombinant MIC3 and MIC6 inhibited parasite killing triggered by CD154 particularly against MIC1-3 ko parasites. Thus, our findings identified EGFR activation as a strategy used by T. gondii to maintain the non-fusogenic nature of the parasitophorous vacuole and suggest that EGF-MICs have a novel role in affecting signaling in host cells to promote parasite survival
Varieties of living things: Life at the intersection of lineage and metabolism
publication-status: Publishedtypes: Articl
Electrical stimulation of somatic afferent nerves in the foot increases bladder capacity in neurogenic bladder patients after sigmoid cystoplasty
- …
