10,174 research outputs found
Antimicrobial resistance and antimicrobial use animal monitoring policies in Europe: Where are we?
The World Health Organization has recognized antimicrobial resistance as one of the top three threats to human health. Any use of antibiotics in animals will ultimately affect humans and vice versa. Appropriate monitoring of antimicrobial use and resistance has been repeatedly emphasized along with the need for global policies. Under the auspices of the European Union research project, EFFORT, we mapped antimicrobial use and resistance monitoring programs in ten European countries. We then compared international and European guidelines and policies. In resistance monitoring, we did not find important differences between countries. Current resistance monitoring systems are focused on food animal species (using fecal samples). They ignore companion animals. The scenario is different for monitoring antibiotics use. Recently, countries have tried to harmonize methodologies, but reporting of antimicrobial use remains voluntary. We therefore identified a need for stronger policies
Electron gyroscale fluctuation measurements in National Spherical Torus Experiment H-mode plasmas
A collective scattering system has measured electron gyroscale fluctuations in National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] H-mode plasmas to investigate electron temperature gradient (ETG) turbulence. Observations and results pertaining to fluctuation measurements in ETG-stable regimes, the toroidal field scaling of fluctuation amplitudes, the relation between fluctuation amplitudes and transport quantities, and fluctuation magnitudes and k-spectra are presented. Collectively, the measurements provide insight and guidance for understanding ETG turbulence and anomalous electron thermal transport. (C) 2009 American Institute of Physics. [doi:10.1063/1.3262530]X116sciescopu
Observations of Reduced Electron Gyroscale Fluctuations in National Spherical Torus Experiment H-Mode Plasmas with Large E X B Flow Shear
Electron gyroscale fluctuation measurements in National Spherical Torus Experiment H-mode plasmas with large toroidal rotation reveal fluctuations consistent with electron temperature gradient (ETG) turbulence. Large toroidal rotation in National Spherical Torus Experiment plasmas with neutral beam injection generates ExB flow shear rates comparable to ETG linear growth rates. Enhanced fluctuations occur when the electron temperature gradient is marginally stable with respect to the ETG linear critical gradient. Fluctuation amplitudes decrease when the ExB flow shear rate exceeds ETG linear growth rates. The observations indicate that ExB flow shear can be an effective suppression mechanism for ETG turbulence.X1129sciescopu
Risk prediction tools for cancer in primary care.
This is the final version of the article. Available from the publisher via the DOI in this record.Numerous risk tools are now available, which predict either current or future risk of a cancer diagnosis. In theory, these tools have the potential to improve patient outcomes through enhancing the consistency and quality of clinical decision-making, facilitating equitable and cost-effective distribution of finite resources such as screening tests or preventive interventions, and encouraging behaviour change. These potential uses have been recognised by the National Cancer Institute as an 'area of extraordinary opportunity' and an increasing number of risk prediction models continue to be developed. The data on predictive utility (discrimination and calibration) of these models suggest that some have potential for clinical application; however, the focus on implementation and impact is much more recent and there remains considerable uncertainty about their clinical utility and how to implement them in order to maximise benefits and minimise harms such as over-medicalisation, anxiety and false reassurance. If the potential benefits of risk prediction models are to be realised in clinical practice, further validation of the underlying risk models and research to assess the acceptability, clinical impact and economic implications of incorporating them in practice are needed
Global change synergies and trade-offs between renewable energy and biodiversity
Reliance on fossil fuels is causing unprecedented climate change and is accelerating environmental degradation and global biodiversity loss. Together, climate change and biodiversity loss, if not averted urgently, may inflict severe damage on ecosystem processes, functions and services that support the welfare of modern societies. Increasing renewable energy deployment and expanding the current protected area network represent key solutions to these challenges, but conflicts may arise over the use of limited land for energy production as opposed to biodiversity conservation. Here, we compare recently identified core areas for the expansion of the global protected area network with the renewable energy potential available from land-based solar photovoltaic, wind energy and bioenergy (in the form of Miscanthus 9 giganteus). We show that these energy sources have very different biodiversity impacts and net energy contributions. The extent of risks and opportunities deriving from renewable energy development is highly dependent on the type of renewable source harvested, the restrictions imposed on energy harvest and the region considered, with Central America appearing at particularly high potential risk from renewable energy expansion. Without restrictions on power generation due to factors such as production and transport costs, we show that bioenergy production is a major potential threat to biodiversity, while the potential impact of wind and solar appears smaller than that of bioenergy. However, these differences become reduced when energy potential is restricted by external factors including local energy demand. Overall, we found that areas of opportunity for developing solar and wind energy with little harm to biodiversity could exist in several regions of the world, with the magnitude of potential impact being particularly dependent on restrictions imposed by local energy demand. The evidence provided here helps guide sustainable development of renewable energy and contributes to the targeting of global efforts in climate mitigation and biodiversity conservation
Experience and Challenges from Clinical Trials with Malaria Vaccines in Africa.
Malaria vaccines are considered amongst the most important modalities for potential elimination of malaria disease and transmission. Research and development in this field has been an area of intense effort by many groups over the last few decades. Despite this, there is currently no licensed malaria vaccine. Researchers, clinical trialists and vaccine developers have been working on many approached to make malaria vaccine available.African research institutions have developed and demonstrated a great capacity to undertake clinical trials in accordance to the International Conference on Harmonization-Good Clinical Practice (ICH-GCP) standards in the last decade; particularly in the field of malaria vaccines and anti-malarial drugs. This capacity is a result of networking among African scientists in collaboration with other partners; this has traversed both clinical trials and malaria control programmes as part of the Global Malaria Action Plan (GMAP). GMAP outlined and support global strategies toward the elimination and eradication of malaria in many areas, translating in reduction in public health burden, especially for African children. In the sub-Saharan region the capacity to undertake more clinical trials remains small in comparison to the actual need.However, sustainability of the already developed capacity is essential and crucial for the evaluation of different interventions and diagnostic tools/strategies for other diseases like TB, HIV, neglected tropical diseases and non-communicable diseases. There is urgent need for innovative mechanisms for the sustainability and expansion of the capacity in clinical trials in sub-Saharan Africa as the catalyst for health improvement and maintained
Early-Onset Progressive Degeneration of the Area Centralis in RPE65-Deficient Dogs.
PURPOSE:
Retinal epithelium-specific protein 65 kDa (RPE65)-deficient dogs are a valuable large animal model species that have been used to refine gene augmentation therapy for Leber congenital amaurosis type-2 (LCA2). Previous studies have suggested that retinal degeneration in the dog model is slower than that observed in humans. However, the area centralis of the dog retina is a cone and rod photoreceptor rich region comparable to the human macula, and the effect of RPE65 deficiency specifically on this retinal region, important for high acuity vision, has not previously been reported.
METHODS:
Spectral-domain optical coherence tomography, fundus photography, and immunohistochemistry of retinal wholemounts and sagittal frozen sections were used to define the time-course and cell-types affected in degeneration of the area centralis in affected dogs.
RESULTS:
Area centralis photoreceptor degeneration was evident from 6 weeks of age, and progressed to involve the inner retina. Immunohistochemistry showed that RPE65-deficient dogs developed early loss of S-cone outer segments, with slower loss of L/M-cone outer segments and rods.
CONCLUSIONS:
Early-onset severe photoreceptor degeneration in the area centralis of dogs with RPE65-deficiency offers a model of the early foveal/perifoveal degeneration in some patients with LCA2. This model could be used to refine interventions aiming to improve function and halt the progression of foveal/perifoveal photoreceptor degeneration
Internal transport barriers in the National Spherical Torus Experiment
In the National Spherical Torus Experiment [M. Ono , Nucl. Fusion 41, 1435 (2001)], internal transport barriers (ITBs) are observed in reversed (negative) shear discharges where diffusivities for electron and ion thermal channels and momentum are reduced. While neutral beam heating can produce ITBs in both electron and ion channels, high harmonic fast wave heating can also produce electron ITBs (e-ITBs) under reversed magnetic shear conditions without momentum input. Interestingly, the location of the e-ITB does not necessarily match that of the ion ITB (i-ITB). The e-ITB location correlates best with the magnetic shear minima location determined by motional Stark effect constrained equilibria, whereas the i-ITB location better correlates with the location of maximum ExB shearing rate. Measured electron temperature gradients in the e-ITB can exceed critical gradients for the onset of electron thermal gradient microinstabilities calculated by linear gyrokinetic codes. A high-k microwave scattering diagnostic shows locally reduced density fluctuations at wave numbers characteristic of electron turbulence for discharges with strongly negative magnetic shear versus weakly negative or positive magnetic shear. Reductions in fluctuation amplitude are found to be correlated with the local value of magnetic shear. These results are consistent with nonlinear gyrokinetic simulations predicting a reduction in electron turbulence under negative magnetic shear conditions despite exceeding critical gradients.X1128sciescopu
Wolbachia and DNA barcoding insects: patterns, potential and problems
Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region
Preliminary interpretation of Titan plasma interaction as observed by the Cassini Plasma Spectrometer: Comparisons with Voyager 1
The Cassini Plasma Spectrometer (CAPS) instrument observed the plasma environment at Titan during the Cassini orbiter's TA encounter on October 26, 2004. Titan was in Saturn's magnetosphere during the Voyager 1 flyby and also during the TA encounter. CAPS measurements from this encounter are compared with measurements made by the Voyager 1 Plasma Science Instrument (PLS). The comparisons focus on the composition and nature of ambient and pickup ions. They lead to: A) the major ion components of Saturn's magnetosphere in the vicinity of Titan are H+, H-2(+) and O+/CH4+ ions; B) finite gyroradius effects are apparent in ambient O+ ions as the result of their absorption by Titan's extended atmosphere; C) the principal pickup ions are composed of H+, H-2(+), N+/CH2+, CH4+, and N-2(+); D) the pickup ions are in narrow energy ranges; and E) there is clear evidence of the slowing down of background ions due to pickup ion mass loading
- …
