30 research outputs found

    Development and validation of a decision analytical model for posttreatment surveillance for patients with oropharyngeal carcinoma

    Get PDF
    Importance Clinical practice regarding posttreatment radiologic surveillance for patients with oropharyngeal carcinoma (OPC) is neither adapted to individual patient risk nor fully evidence based. Objectives To construct a microsimulation model for posttreatment OPC progression and use it to optimize surveillance strategies while accounting for both tumor stage and human papillomavirus (HPV) status. Design, Setting, and Participants In this decision analytical modeling study, a Markov model of 3-year posttreatment patient trajectories was created. The training data source was the American College of Surgeon’s National Cancer Database from 2010 to 2015. The external validation data set was the 2016 International Collaboration on Oropharyngeal Cancer Network for Staging (ICON-S) study. Training data comprised 2159 patients with OPC treated with primary radiotherapy who had known HPV status and disease staging information. Patients with American Joint Committee on Cancer, 7th edition stage III to IVB disease and those with clinical metastases during the time of primary treatment were included. Data were analyzed from August 1 to October 31, 2020. Main Outcomes and Measures Main outcomes included disease stage and HPV status, specific disease transition probabilities, and latency of surveillance regimens, defined as time between recurrence incidence and disease discovery. Results Training data consisted of 2159 total patients (1708 men [79.1%]; median age, 59.6 years [range, 40-90 years]; 401 with stage III disease, 1415 with stage IVA disease, and 343 with stage IVB disease). Cohorts predominantly had HPV-negative disease (1606 [74.4%]). With model-optimized regimens, recurrent disease was discovered a mean of 0.6 months (95% CI, 0.5-0.8 months) earlier than with a standard surveillance regimen based on current clinical guidelines. Recurrent disease was discovered using the optimized regimens without significant reduction in sensitivity. Compared with strategies based on reimbursement guidelines, the model-optimized regimens found disease a mean of 1.8 months (95% CI, 1.3-2.3 months) earlier. Conclusions and Relevance Optimized, risk-stratified surveillance regimens consistently outperformed nonoptimized strategies. These gains were obtained without requiring any additional imaging studies. This approach to risk-stratified surveillance optimization is generalizable to a broad range of tumor types and risk factors

    Use of an orthovoltage X-ray treatment unit as a radiation research system in a small-animal cancer model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We explore the use of a clinical orthovoltage X-ray treatment unit as a small-animal radiation therapy system in a tumoral model of cervical cancer.</p> <p>Methods</p> <p>Nude mice were subcutaneously inoculated with 5 × 10<sup>6 </sup>HeLa cells in both lower limbs. When tumor volume approximated 200 mm<sup>3 </sup>treatment was initiated. Animals received four 2 mg/kg intraperitoneal cycles (1/week) of cisplatin and/or 6.25 mg/kg of gemcitabine, concomitant with radiotherapy. Tumors were exposed to 2.5 Gy/day nominal surface doses (20 days) of 150 kV X-rays. Lead collimators with circular apertures (0.5 to 1.5 cm diameter) were manufactured and mounted on the applicator cone to restrict the X-ray beam onto tumors. X-ray penetration and conformality were evaluated by measuring dose at the surface and behind the tumor lobe by using HS GafChromic film. Relative changes in tumor volume (RTV) and a clonogenic assay were used to evaluate the therapeutic response of the tumor, and relative weight loss was used to assess toxicity of the treatments.</p> <p>Results</p> <p>No measurable dose was delivered outside of the collimator apertures. The analysis suggests that dose inhomogeneities in the tumor reach up to ± 11.5% around the mean tumor dose value, which was estimated as 2.2 Gy/day. Evaluation of the RTV showed a significant reduction of the tumor volume as consequence of the chemoradiotherapy treatment; results also show that toxicity was well tolerated by the animals.</p> <p>Conclusion</p> <p>Results and procedures described in the present work have shown the usefulness and convenience of the orthovoltage X-ray system for animal model radiotherapy protocols.</p

    Sequence-dependent effects of ZD1839 (‘Iressa’) in combination with cytotoxic treatment in human head and neck cancer

    Get PDF
    Elevated levels of epidermal growth factor receptor in head and neck cancer have been extensively reported, and are correlated with poor prognosis. The combination of cisplatin and 5-fluorouracil is a standard treatment regimen for head and neck cancer, with radiation representing another therapeutic option. Six head and neck cancer cell lines were used to study the cytotoxic effects of combining ZD1839 (‘Iressa’), a new selective epidermal growth factor receptor tyrosine kinase inhibitor, and radiation. Two of the cell lines were also used to study the combination of ZD1839 and cisplatin/5-fluorouracil. Cytotoxic effects were assessed by the MTT test. The results indicated that ZD1839 applied before radiation gave the best effects (P=0.002); an effect that was strongest in those p53-mutated cell lines that express the highest epidermal growth factor receptor levels. The effects of ZD1839 with cisplatin and/or 5-fluorouracil were sequence dependent (P<0.003), with the best results achieved when ZD1839 was applied first. For the triple combinations, ZD1839 applied before cisplatin and 5-fluorouracil resulted in a slight synergistic effect (P=0.03), although the effect was greater when ZD1839 was applied both before and during cytotoxic drug exposure. In conclusion, ZD1839 applied before radiation and before and/or during cisplatin/5-fluorouracil may improve the efficacy of treatment for head and neck cancer

    Accelerated high-dose radiotherapy alone or combined with either concomitant or sequential chemotherapy; treatments of choice in patients with Non-Small Cell Lung Cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Results of high-dose chemo-radiotherapy (CRT), using the treatment schedules of EORTC study 08972/22973 or radiotherapy (RT) alone were analyzed among all patients (pts) with Non Small Cell Lung Cancer (NSCLC) treated with curative intent in our department from 1995–2004.</p> <p>Material</p> <p>Included are 131 pts with medically inoperable or with irresectable NSCLC (TNM stage I:15 pts, IIB:15 pts, IIIA:57 pts, IIIB:43 pts, X:1 pt).</p> <p>Treatment</p> <p>Group I: Concomitant CRT: 66 Gy/2.75 Gy/24 fractions (fx)/33 days combined with daily administration of cisplatin 6 mg/m<sup>2</sup>: 56 pts (standard).</p> <p>Group II: Sequential CRT: two courses of a 21-day schedule of chemotherapy (gemcitabin 1250 mg/m<sup>2 </sup>d1, cisplatin 75 mg/m2 d2) followed by 66 Gy/2.75 Gy/24 fx/33 days without daily cisplatin: 26 pts.</p> <p>Group III: RT: 66 Gy/2.75 Gy/24 fx/33 days or 60 Gy/3 Gy/20 fx/26 days: 49 pts.</p> <p>Results</p> <p>The 1, 2, and 5 year actuarial overall survival (OS) were 46%, 24%, and 15%, respectively.</p> <p>At multivariate analysis the only factor with a significantly positive influence on OS was treatment with chemo-radiation (P = 0.024) (1-, 2-, and 5-yr OS 56%, 30% and 22% respectively). The incidence of local recurrence was 36%, the incidence of distant metastases 46%.</p> <p>Late complications grade 3 were seen in 21 pts and grade 4 in 4 patients. One patient had a lethal complication (oesophageal). For 32 patients insufficient data were available to assess late complications.</p> <p>Conclusion</p> <p>In this study we were able to reproduce the results of EORTC trial 08972/22973 in a non-selected patient population outside of the setting of a randomised trial. Radiotherapy (66 Gy/24 fx/33 days) combined with either concomitant daily low dose cisplatin or with two neo-adjuvant courses of gemcitabin and cisplatin are effective treatments for patients with locally advanced Non-Small Cell Lung Cancer. The concomitant schedule is also suitable for elderly people with co-morbidity.</p

    Cytokine Plasma Levels: Reliable Predictors for Radiation Pneumonitis?

    Get PDF
    BACKGROUND: Radiotherapy (RT) is the primary treatment modality for inoperable, locally advanced non-small-cell lung cancer (NSCLC), but even with highly conformal treatment planning, radiation pneumonitis (RP) remains the most serious, dose-limiting complication. Previous clinical reports proposed that cytokine plasma levels measured during RT allow to estimate the individual risk of patients to develop RP. The identification of such cytokine risk profiles would facilitate tailoring radiotherapy to maximize treatment efficacy and to minimize radiation toxicity. However, cytokines are produced not only in normal lung tissue after irradiation, but are also over-expressed in tumour cells of NSCLC specimens. This tumour-derived cytokine production may influence circulating plasma levels in NSCLC patients. The aim of the present study was to investigate the prognostic value of TNF-alpha, IL-1beta, IL-6 and TGF-beta1 plasma levels to predict radiation pneumonitis and to evaluate the impact of tumour-derived cytokine production on circulating plasma levels in patients irradiated for NSCLC. METHODOLOGY/PRINCIPAL FINDINGS: In 52 NSCLC patients (stage I-III) cytokine plasma levels were investigated by ELISA before and weekly during RT, during follow-up (1/3/6/9 months after RT), and at the onset of RP. Tumour biopsies were immunohistochemically stained for IL-6 and TGF-beta1, and immunoreactivity was quantified (grade 1-4). RP was evaluated according to LENT-SOMA scale. Tumour response was assessed according to RECIST criteria by chest-CT during follow-up. In our clinical study 21 out of 52 patients developed RP (grade I/II/III/IV: 11/3/6/1 patients). Unexpectedly, cytokine plasma levels measured before and during RT did not correlate with RP incidence. In most patients IL-6 and TGF-beta1 plasma levels were already elevated before RT and correlated significantly with the IL-6 and TGF-beta1 production in corresponding tumour biopsies. Moreover, IL-6 and TGF-beta1 plasma levels measured during follow-up were significantly associated with the individual tumour responses of these patients. CONCLUSIONS/SIGNIFICANCE: The results of this study did not confirm that cytokine plasma levels, neither their absolute nor any relative values, may identify patients at risk for RP. In contrast, the clear correlations of IL-6 and TGF-beta1 plasma levels with the cytokine production in corresponding tumour biopsies and with the individual tumour responses suggest that the tumour is the major source of circulating cytokines in patients receiving RT for advanced NSCLC

    Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns

    Get PDF
    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa
    corecore