879 research outputs found
Frozen and Invariant Quantum Discord under Local Dephasing Noise
In this chapter, we intend to explore and review some remarkable dynamical
properties of quantum discord under various different open quantum system
models. Specifically, our discussion will include several concepts connected to
the phenomena of time invariant and frozen quantum discord. Furthermore, we
will elaborate on the relation of these two phenomena to the non-Markovian
features of the open system dynamics and to the usage of dynamical decoupling
protocols.Comment: 29 pages, 8 figure
The sudden change phenomenon of quantum discord
Even if the parameters determining a system's state are varied smoothly, the
behavior of quantum correlations alike to quantum discord, and of its classical
counterparts, can be very peculiar, with the appearance of non-analyticities in
its rate of change. Here we review this sudden change phenomenon (SCP)
discussing some important points related to it: Its uncovering,
interpretations, and experimental verifications, its use in the context of the
emergence of the pointer basis in a quantum measurement process, its appearance
and universality under Markovian and non-Markovian dynamics, its theoretical
and experimental investigation in some other physical scenarios, and the
related phenomenon of double sudden change of trace distance discord. Several
open questions are identified, and we envisage that in answering them we will
gain significant further insight about the relation between the SCP and the
symmetry-geometric aspects of the quantum state space.Comment: Lectures on General Quantum Correlations and their Applications, F.
F. Fanchini, D. O. Soares Pinto, and G. Adesso (Eds.), Springer (2017), pp
309-33
4Pipe4-A 454 data analysis pipeline for SNP detection in datasets with no reference sequence or strain information
This work was fully supported by projects SOBREIRO/0036/2009 (under the framework of the Cork Oak ESTs Consortium), PTDC/BIA-BEC/098783/2008 and PTDC/AGR-GPL/119943/2010 from Fundação para a Ciência e Tecnologia (FCT) – Portugal. F. Pina-Martins was funded by FCT grant SFRH/BD/51411/2011, under the PhD program “Biology and Ecology of Global Changes”, Univ. Aveiro & Univ. Lisbon, Portugal. D. Batista was funded by FCT grant SFRH/BPD/104629/2014
Effects of Dual Targeting of Tumor Cells and Stroma in Human Glioblastoma Xenografts with a Tyrosine Kinase Inhibitor against c-MET and VEGFR2
Contains fulltext :
118357.pdf (publisher's version ) (Open Access)Anti-angiogenic treatment of glioblastoma with Vascular Endothelial Growth Factor (VEGF)- or VEGF Receptor 2 (VEGFR2) inhibitors normalizes tumor vessels, resulting in a profound radiologic response and improved quality of life. This approach however does not halt tumor progression by diffuse infiltration, as this phenotype is less angiogenesis dependent. Combined inhibition of angiogenesis and diffuse infiltrative growth would therefore be a more effective treatment approach in these tumors. The HGF/c-MET axis is important in both angiogenesis and cell migration in several tumor types including glioma. We therefore analyzed the effects of the c-MET- and VEGFR2 tyrosine kinase inhibitor cabozantinib (XL184, Exelixis) on c-MET positive orthotopic E98 glioblastoma xenografts, which routinely present with angiogenesis-dependent areas of tumor growth, as well as diffuse infiltrative growth. In cultures of E98 cells, cabozantinib effectively inhibited c-MET phosphorylation, concomitant with inhibitory effects on AKT and ERK1/2 phosphorylation, and cell proliferation and migration. VEGFR2 activation in endothelial cells was also effectively inhibited . Treatment of BALB/c nu/nu mice carrying orthotopic E98 xenografts resulted in a significant increase in overall survival. Cabozantinib effectively inhibited angiogenesis, resulting in increased hypoxia in angiogenesis-dependent tumor areas, and induced vessel normalization. Yet, tumors ultimately escaped cabozantinib therapy by diffuse infiltrative outgrowth via vessel co-option. Of importance, in contrast to the results from experiments, blockade of c-MET activation was incomplete, possibly due to multiple factors including restoration of the blood-brain barrier resulting from cabozantinib-induced VEGFR2 inhibition. In conclusion, cabozantinib is a promising therapy for c-MET positive glioma, but improving delivery of the drug to the tumor and/or the surrounding tissue may be needed for full activity
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Altered processing of sensory stimuli in patients with migraine
Migraine is a cyclic disorder, in which functional and morphological brain changes fluctuate over time, culminating periodically in an attack. In the migrainous brain, temporal processing of external stimuli and sequential recruitment of neuronal networks are often dysfunctional. These changes reflect complex CNS dysfunction patterns. Assessment of multimodal evoked potentials and nociceptive reflex responses can reveal altered patterns of the brain's electrophysiological activity, thereby aiding our understanding of the pathophysiology of migraine. In this Review, we summarize the most important findings on temporal processing of evoked and reflex responses in migraine. Considering these data, we propose that thalamocortical dysrhythmia may be responsible for the altered synchronicity in migraine. To test this hypothesis in future research, electrophysiological recordings should be combined with neuroimaging studies so that the temporal patterns of sensory processing in patients with migraine can be correlated with the accompanying anatomical and functional changes
Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV
Peer reviewe
MSRE-HTPrimer: a high-throughput and genome-wide primer design pipeline optimized for epigenetic research
ConservedPrimers 2.0: A high-throughput pipeline for comparative genome referenced intron-flanking PCR primer design and its application in wheat SNP discovery
<p>Abstract</p> <p>Background</p> <p>In some genomic applications it is necessary to design large numbers of PCR primers in exons flanking one or several introns on the basis of orthologous gene sequences in related species. The primer pairs designed by this target gene approach are called "intron-flanking primers" or because they are located in exonic sequences which are usually conserved between related species, "conserved primers". They are useful for large-scale single nucleotide polymorphism (SNP) discovery and marker development, especially in species, such as wheat, for which a large number of ESTs are available but for which genome sequences and intron/exon boundaries are not available. To date, no suitable high-throughput tool is available for this purpose.</p> <p>Results</p> <p>We have developed, the ConservedPrimers 2.0 pipeline, for designing intron-flanking primers for large-scale SNP discovery and marker development, and demonstrated its utility in wheat. This tool uses non-redundant wheat EST sequences, such as wheat contigs and singleton ESTs, and related genomic sequences, such as those of rice, as inputs. It aligns the ESTs to the genomic sequences to identify unique colinear exon blocks and predicts intron lengths. Intron-flanking primers are then designed based on the intron/exon information using the Primer3 core program or BatchPrimer3. Finally, a tab-delimited file containing intron-flanking primer pair sequences and their primer properties is generated for primer ordering and their PCR applications. Using this tool, 1,922 bin-mapped wheat ESTs (31.8% of the 6,045 in total) were found to have unique colinear exon blocks suitable for primer design and 1,821 primer pairs were designed from these single- or low-copy genes for PCR amplification and SNP discovery. With these primers and subsequently designed genome-specific primers, a total of 1,527 loci were found to contain one or more genome-specific SNPs.</p> <p>Conclusion</p> <p>The ConservedPrimers 2.0 pipeline for designing intron-flanking primers was developed and its utility demonstrated. The tool can be used for SNP discovery, genetic variation assays and marker development for any target genome that has abundant ESTs and a related reference genome that has been fully sequenced. The ConservedPrimers 2.0 pipeline has been implemented as a command-line tool as well as a web application. Both versions are freely available at <url>http://wheat.pw.usda.gov/demos/ConservedPrimers/</url>.</p
Phylogeny of Basal Iguanodonts (Dinosauria: Ornithischia): An Update
The precise phylogenetic relationships of many non-hadrosaurid members of Iguanodontia, i.e., basal iguanodonts, have been unclear. Therefore, to investigate the global phylogeny of basal iguanodonts a comprehensive data matrix was assembled, including nearly every valid taxon of basal iguanodont. The matrix was analyzed in the program TNT, and the maximum agreement subtree of the resulting most parsimonious trees was then calculated in PAUP. Ordering certain multistate characters and omitting taxa through safe taxonomic reduction did not markedly improve resolution. The results provide some new information on the phylogeny of basal iguanodonts, pertaining especially to obscure or recently described taxa, and support some recent taxonomic revisions, such as the splitting of traditional “Camptosaurus” and “Iguanodon”. The maximum agreement subtree also shows a close relationship between the Asian Probactrosaurus gobiensis and the North American Eolambia, supporting the previous hypothesis of faunal interchange between Asia and North America in the early Late Cretaceous. Nevertheless, the phylogenetic relationships of many basal iguanodonts remain ambiguous due to the high number of taxa removed from the maximum agreement subtree and poor resolution of consensus trees
- …
