5,585 research outputs found
Casimir forces on a silicon micromechanical chip
Quantum fluctuations give rise to van der Waals and Casimir forces that
dominate the interaction between electrically neutral objects at sub-micron
separations. Under the trend of miniaturization, such quantum electrodynamical
effects are expected to play an important role in micro- and nano-mechanical
devices. Nevertheless, utilization of Casimir forces on the chip level remains
a major challenge because all experiments so far require an external object to
be manually positioned close to the mechanical element. Here, by integrating a
force-sensing micromechanical beam and an electrostatic actuator on a single
chip, we demonstrate the Casimir effect between two micromachined silicon
components on the same substrate. A high degree of parallelism between the two
near-planar interacting surfaces can be achieved because they are defined in a
single lithographic step. Apart from providing a compact platform for Casimir
force measurements, this scheme also opens the possibility of tailoring the
Casimir force using lithographically defined components of non-conventional
shapes
On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays
Significant multiplexing capacity of optical time-domain coding has been recently demonstrated by tuning luminescence lifetimes of the upconversion nanoparticles called 'τ-Dots'. It provides a large dynamic range of lifetimes from microseconds to milliseconds, which allows creating large libraries of nanotags/microcarriers. However, a robust approach is required to rapidly and accurately measure the luminescence lifetimes from the relatively slow-decaying signals. Here we show a fast algorithm suitable for the microsecond region with precision closely approaching the theoretical limit and compatible with the rapid scanning cytometry technique.We exploit this approach to further extend optical time-domain multiplexing to the downconversion luminescence, using luminescence microspheres wherein lifetimes are tuned through luminescence resonance energy transfer.We demonstrate real-time discrimination of these microspheres in the rapid scanning cytometry, and apply them to the multiplexed probing of pathogen DNA strands. Our results indicate that tunable luminescence lifetimes have considerable potential in high-throughput analytical sciences. © 2014 Macmillan Publishers Limited. All rights reserved
Super-resolution far-field ghost imaging via compressive sampling
Much more image details can be resolved by improving the system's imaging
resolution and enhancing the resolution beyond the system's Rayleigh
diffraction limit is generally called super-resolution. By combining the sparse
prior property of images with the ghost imaging method, we demonstrated
experimentally that super-resolution imaging can be nonlocally achieved in the
far field even without looking at the object. Physical explanation of
super-resolution ghost imaging via compressive sampling and its potential
applications are also discussed.Comment: 4pages,4figure
Variational Methods for Biomolecular Modeling
Structure, function and dynamics of many biomolecular systems can be
characterized by the energetic variational principle and the corresponding
systems of partial differential equations (PDEs). This principle allows us to
focus on the identification of essential energetic components, the optimal
parametrization of energies, and the efficient computational implementation of
energy variation or minimization. Given the fact that complex biomolecular
systems are structurally non-uniform and their interactions occur through
contact interfaces, their free energies are associated with various interfaces
as well, such as solute-solvent interface, molecular binding interface, lipid
domain interface, and membrane surfaces. This fact motivates the inclusion of
interface geometry, particular its curvatures, to the parametrization of free
energies. Applications of such interface geometry based energetic variational
principles are illustrated through three concrete topics: the multiscale
modeling of biomolecular electrostatics and solvation that includes the
curvature energy of the molecular surface, the formation of microdomains on
lipid membrane due to the geometric and molecular mechanics at the lipid
interface, and the mean curvature driven protein localization on membrane
surfaces. By further implicitly representing the interface using a phase field
function over the entire domain, one can simulate the dynamics of the interface
and the corresponding energy variation by evolving the phase field function,
achieving significant reduction of the number of degrees of freedom and
computational complexity. Strategies for improving the efficiency of
computational implementations and for extending applications to coarse-graining
or multiscale molecular simulations are outlined.Comment: 36 page
Photoswitchable diacylglycerols enable optical control of protein kinase C.
Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling
Spontaneous migraine attack causes alterations in default mode network connectivity
BACKGROUND:
Although migraine is one of the most investigated neurologic disorders, we do not have a perfect neuroimaging biomarker for its pathophysiology. One option to improve our knowledge is to study resting-state functional connectivity in and out of headache pain. However, our understanding of the functional connectivity changes during spontaneous migraine attack is partial and incomplete.
CASE PRESENTATION:
Using resting-state functional magnetic resonance imaging we assessed a 24-year old woman affected by migraine without aura at two different times: during a spontaneous migraine attack and in interictal phase. Seed-to-voxel whole brain analysis was carried out using the posterior cingulate cortex as a seed, representing the default mode network (DMN). Our results showed decreased intrinsic connectivity within core regions of the DMN with an exception of a subsystem including the dorsal medial and superior frontal gyri, and the mid-temporal gyrus which is responsible for pain interpretation and control. In addition, increased connectivity between the DMN and pain and specific migraine-related areas, such as the pons and hypothalamus, developed during the spontaneous migraine attack.
CONCLUSION:
Our preliminary results provide further support for the hypothesis that alterations of the DMN functional connectivity during migraine headache may lead to maladaptive top-down modulation of migraine pain-related areas which might be a specific biomarker for migraine
Application of Graphene within Optoelectronic Devices and Transistors
Scientists are always yearning for new and exciting ways to unlock graphene's
true potential. However, recent reports suggest this two-dimensional material
may harbor some unique properties, making it a viable candidate for use in
optoelectronic and semiconducting devices. Whereas on one hand, graphene is
highly transparent due to its atomic thickness, the material does exhibit a
strong interaction with photons. This has clear advantages over existing
materials used in photonic devices such as Indium-based compounds. Moreover,
the material can be used to 'trap' light and alter the incident wavelength,
forming the basis of the plasmonic devices. We also highlight upon graphene's
nonlinear optical response to an applied electric field, and the phenomenon of
saturable absorption. Within the context of logical devices, graphene has no
discernible band-gap. Therefore, generating one will be of utmost importance.
Amongst many others, some existing methods to open this band-gap include
chemical doping, deformation of the honeycomb structure, or the use of carbon
nanotubes (CNTs). We shall also discuss various designs of transistors,
including those which incorporate CNTs, and others which exploit the idea of
quantum tunneling. A key advantage of the CNT transistor is that ballistic
transport occurs throughout the CNT channel, with short channel effects being
minimized. We shall also discuss recent developments of the graphene tunneling
transistor, with emphasis being placed upon its operational mechanism. Finally,
we provide perspective for incorporating graphene within high frequency
devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and
the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures
Murine model for Fusarium oxysporum invasive fusariosis reveals organ-specific structures for dissemination and long-term persistence
Peer reviewedPublisher PD
The role of magnetic anisotropy in the Kondo effect
In the Kondo effect, a localized magnetic moment is screened by forming a
correlated electron system with the surrounding conduction electrons of a
non-magnetic host. Spin S=1/2 Kondo systems have been investigated extensively
in theory and experiments, but magnetic atoms often have a larger spin. Larger
spins are subject to the influence of magnetocrystalline anisotropy, which
describes the dependence of the magnetic moment's energy on the orientation of
the spin relative to its surrounding atomic environment. Here we demonstrate
the decisive role of magnetic anisotropy in the physics of Kondo screening. A
scanning tunnelling microscope is used to simultaneously determine the
magnitude of the spin, the magnetic anisotropy and the Kondo properties of
individual magnetic atoms on a surface. We find that a Kondo resonance emerges
for large-spin atoms only when the magnetic anisotropy creates degenerate
ground-state levels that are connected by the spin flip of a screening
electron. The magnetic anisotropy also determines how the Kondo resonance
evolves in a magnetic field: the resonance peak splits at rates that are
strongly direction dependent. These rates are well described by the energies of
the underlying unscreened spin states.Comment: 14 pages, 4 figures, published in Nature Physic
Recognising facial expressions in video sequences
We introduce a system that processes a sequence of images of a front-facing human face and recognises a set of facial expressions. We use an efficient appearance-based face tracker to locate the face in the image sequence and estimate the deformation of its non-rigid components. The tracker works in real-time. It is robust to strong illumination changes and factors out changes in appearance caused by illumination from changes due to face deformation. We adopt a model-based approach for facial expression recognition. In our model, an image of a face is represented by a point in a deformation space. The variability of the classes of images associated to facial expressions are represented by a set of samples which model a low-dimensional manifold in the space of deformations. We introduce a probabilistic procedure based on a nearest-neighbour approach to combine the information provided by the incoming image sequence with the prior information stored in the expression manifold in order to compute a posterior probability associated to a facial expression. In the experiments conducted we show that this system is able to work in an unconstrained environment with strong changes in illumination and face location. It achieves an 89\% recognition rate in a set of 333 sequences from the Cohn-Kanade data base
- …
