7 research outputs found

    Characterization of olive-leaf phenolics by ESI-MS and evaluation of their antioxidant capacities by the CAT assay

    Full text link
    Olive leaves are a very abundant vegetable material containing various phenolic compounds, such as secoiridoids and flavonoids, that are expected to exert strong antioxidant capacity. However, little is known about the variation of olive-leaf phenolic composition during maturation and its influence on antioxidant capacity. To answer this question, young and mature Olea Europaea L. leaves were submitted to successive extraction with dichloromethane, ethyl acetate, and methanol, then characterized by ESI-MS. It appeared that mature olive-leaf extracts contained higher levels of verbascoside isomers and glucosylated forms of luteolin, while young ones presented higher contents of oleuropein, ligstroside, and flavonoid aglycones. Moreover, antioxidant capacity evaluation using our newly developed conjugated autoxidizable triene assay showed that, in a lipid-based emulsified system, this phenolic composition variation leads to a change in the ability of extracts to counteract lipid oxidation. Mature olive-leaf extracts exhibit higher antioxidant capacity than young olive-leaf extracts. This result enables us to hypothesize that two main bioconversion scenarios may occur during maturation of olive leaves, which could explain changes observed in antioxidant capacity: (1) a bioconversion of oleuropein and ligstroside into verbascoside isomers and oleuroside, and (2) a bioconversion of flavonoid aglycones into glucosylated forms of luteolin. Finally, this study leads to a better understanding of the relationship between phenolic profile and antioxidant capacity of olive leaves. (Résumé d'auteur

    Effect of olive leaf extract rich in oleuropein on the quality of virgin olive oil

    No full text
    Effect of olive leaf extract rich in oleuropein on the quality of virgin olive oil was investigated. After extracting the dried and ground olive leaves with the assistance of homogenizer, the dried extract was partially dissolved into the oil to increase the oxidative stability of the oil. A face central composite design through response surface methodology was used to investigate the effects of enrichment conditions (extract content, time and mixing speed) on the responses, total phenolic content and oleuropein concentration of the enriched olive oil. Furthermore, antioxidant activity of the oil was determined by 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt method. Additionally, oxidative stability of the enriched oil was assessed by the Rancimat method. Total carotenoid content, peroxide value, alpha-tocopherol and chlorophyll were also measured, respectively. Addition of 0.15% natural antioxidant increased the stability of the oil (ae46%). The antioxidant capacity of the enriched oil was almost 2.5 times higher than that of the untreated oil. Furthermore, olive leaf extract improved the quality of the virgin olive oil with respect to tocopherol, carotenoid and chlorophyll contents and peroxide value, respectively. The leaf sampling was also performed both in the autumn and summer to evaluate the possible seasonal effects on phenolic profile in order to be careful for selecting the proper harvesting time to apply the extract into the oil

    Olive Oil Oxidation

    No full text
    corecore