400 research outputs found
Higher serum levels of periostin and the risk of exacerbations in moderate asthmatics
BACKGROUND: In asthma, exacerbations and poor disease control are linked to airway allergic inflammation. Serum periostin has been proposed as a systemic biomarker of eosinophilic inflammation. This pilot study aims at evaluating whether in patients with moderate asthma, higher baseline levels of serum periostin are associated with a greater risk of exacerbation.
METHODS: Fifteen outpatients with moderate allergic asthma were recruited. Serum concentrations of periostin were assessed (ELISA) at baseline, and the frequency of asthma exacerbations was recorded during a one-year follow-up.
RESULTS: Patients (M/F: 10/5, mean age of 47.6\u2009\ub1\u200911.0 years) had mean ACQ score of 5.5\u2009\ub1\u20094.2 and FEV1%pred of 81.9\u2009\ub1\u200921.7 %. Baseline serum levels of periostin did not correlate with lung function parameters, nor with the ACQ score (p 650.05 for all analyses). Five subjects (33 % of the study group) reported one or more exacerbations during the following year. Baseline serum levels of periostin were significantly higher in subjects who experienced one or more exacerbations during the one year period of follow-up, compared with subjects with no exacerbations: median serum periostin level was 4047 ng/ml (range: 2231 to 4889 ng/ml) and 222
ng/ml (range 28.2 to 1631 ng/ml) respectively; p\u2009=\u20090.001.
CONCLUSION: The findings of the present pilot study could form the basis for the design of larger studies aiming at developing strategies to identify asthmatic patients at risk for exacerbations
Graphene Photonics and Optoelectronics
The richness of optical and electronic properties of graphene attracts
enormous interest. Graphene has high mobility and optical transparency, in
addition to flexibility, robustness and environmental stability. So far, the
main focus has been on fundamental physics and electronic devices. However, we
believe its true potential to be in photonics and optoelectronics, where the
combination of its unique optical and electronic properties can be fully
exploited, even in the absence of a bandgap, and the linear dispersion of the
Dirac electrons enables ultra-wide-band tunability. The rise of graphene in
photonics and optoelectronics is shown by several recent results, ranging from
solar cells and light emitting devices, to touch screens, photodetectors and
ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres
Migration from China to the EU: the challenge within Europe
At the beginning of the 21st Century, we have witnessed a rapid growth in Chinese immigration to the European Union (EU), which has had a profound impact on local Chinese communities in various ways. This chapter aims to reveal the latest developments in Chinese immigration in the EU, as well as the new dynamics, features and impacts on local Chinese communities. The above questions are addressed by a combination of secondary data analysis and our own observation in Italy and the UK in recent years. Some challenging issues facing Chinese communities are highlighted
Active dielectric antenna on chip for spatial light modulation
Integrated photonic resonators are widely used to manipulate light propagation in an evanescently-coupled
waveguide. While the evanescent coupling scheme works well for planar optical systems that are naturally
waveguide based, many optical applications are free-space based, such as imaging, display, holographics,
metrology and remote sensing. Here we demonstrate an active dielectric antenna as the interface device that
allows the large-scale integration capability of silicon photonics to serve the free-space applications. We
show a novel perturbation-base diffractive coupling scheme that allows a high-Q planer resonator to directly
interact with and manipulate free-space waves. Using a silicon-based photonic crystal cavity whose
resonance can be rapidly tuned with a p-i-n junction, a compact spatial light modulator with an extinction
ratio of 9.5 dB and a modulation speed of 150 MHz is demonstrated. Method to improve the modulation
speed is discussed.Air Force Office of Scientific Research (AFOSR grant FA9550-12-1-0261
Resolution of inflammation: a new therapeutic frontier
Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes — a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field
The chromosome content and genotype of two wheat cell lines and of their somatic fusion product with oat
Somatic hybridization seeks to genetically combine phylogenetically distant parents. An effective system has been established in bread wheat (Triticum aestivum L.) involving protoplasts from a non-totipotent cell line adapted to in vitro culture (T1) in combination with totipotent protoplasts harvested from embryogenic calli (T2). Here, we report the karyotype and genotype of T1 and T2. Line T1 carries nine A (A-genome of wheat), seven B (B-genome of wheat) and eight D (D-genome of wheat) genome chromosomes, while T2 cells have 12 A, 10 B and 12 D genome chromosomes. Rates of chromosome aberration in the B- and D-genomes were more than 25%, higher than in the A-genome. DNA deletion rates were 55.6% in T1 and 19.4% in T2, and DNA variation rates were 8.3% in T1 and 13.9% in T2. Rate of DNA elimination was B- > D- > A-genome in both T1 and T2. The same set of cytological and genetic assays was applied to a derivative of the somatic fusion between protoplasts of T1, T2 and oat (Avena sativa L.). The regenerant plants were near euploid with respect to their wheat complement. Six wheat chromosome arms—4AL, 3BS, 4BL, 3DS, 6DL and 7DL—carried small introgressed segments of oat chromatin. A genotypic analysis of the hybrid largely confirmed this cytologically-based diagnosis
Large-scale unit commitment under uncertainty: an updated literature survey
The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject
Laparoscopy in management of appendicitis in high-, middle-, and low-income countries: a multicenter, prospective, cohort study.
BACKGROUND: Appendicitis is the most common abdominal surgical emergency worldwide. Differences between high- and low-income settings in the availability of laparoscopic appendectomy, alternative management choices, and outcomes are poorly described. The aim was to identify variation in surgical management and outcomes of appendicitis within low-, middle-, and high-Human Development Index (HDI) countries worldwide. METHODS: This is a multicenter, international prospective cohort study. Consecutive sampling of patients undergoing emergency appendectomy over 6 months was conducted. Follow-up lasted 30 days. RESULTS: 4546 patients from 52 countries underwent appendectomy (2499 high-, 1540 middle-, and 507 low-HDI groups). Surgical site infection (SSI) rates were higher in low-HDI (OR 2.57, 95% CI 1.33-4.99, p = 0.005) but not middle-HDI countries (OR 1.38, 95% CI 0.76-2.52, p = 0.291), compared with high-HDI countries after adjustment. A laparoscopic approach was common in high-HDI countries (1693/2499, 67.7%), but infrequent in low-HDI (41/507, 8.1%) and middle-HDI (132/1540, 8.6%) groups. After accounting for case-mix, laparoscopy was still associated with fewer overall complications (OR 0.55, 95% CI 0.42-0.71, p < 0.001) and SSIs (OR 0.22, 95% CI 0.14-0.33, p < 0.001). In propensity-score matched groups within low-/middle-HDI countries, laparoscopy was still associated with fewer overall complications (OR 0.23 95% CI 0.11-0.44) and SSI (OR 0.21 95% CI 0.09-0.45). CONCLUSION: A laparoscopic approach is associated with better outcomes and availability appears to differ by country HDI. Despite the profound clinical, operational, and financial barriers to its widespread introduction, laparoscopy could significantly improve outcomes for patients in low-resource environments. TRIAL REGISTRATION: NCT02179112
Bumblebees exhibit the memory spacing effect
Associative learning is key to how bees recognize and return to rewarding floral resources. It thus plays a major role in pollinator floral constancy and plant gene flow. Honeybees are the primary model for pollinator associative learning, but bumblebees play an important ecological role in a wider range of habitats, and their associative learning abilities are less well understood. We assayed learning with the proboscis extension reflex (PER), using a novel method for restraining bees (capsules) designed to improve bumblebee learning. We present the first results demonstrating that bumblebees exhibit the memory spacing effect. They improve their associative learning of odor and nectar reward by exhibiting increased memory acquisition, a component of long-term memory formation, when the time interval between rewarding trials is increased. Bombus impatiens forager memory acquisition (average discrimination index values) improved by 129% and 65% at inter-trial intervals (ITI) of 5 and 3 min, respectively, as compared to an ITI of 1 min. Memory acquisition rate also increased with increasing ITI. Encapsulation significantly increases olfactory memory acquisition. Ten times more foragers exhibited at least one PER response during training in capsules as compared to traditional PER harnesses. Thus, a novel conditioning assay, encapsulation, enabled us to improve bumblebee-learning acquisition and demonstrate that spaced learning results in better memory consolidation. Such spaced learning likely plays a role in forming long-term memories of rewarding floral resources
Genomic Organization, Molecular Diversification, and Evolution of Antimicrobial Peptide Myticin-C Genes in the Mussel (Mytilus galloprovincialis)
Myticin-C is a highly variable antimicrobial peptide associated to immune response in Mediterranean mussel (Mytilus galloprovincialis). In this study, we tried to ascertain the genetic organization and the mechanisms underlying myticin-C variation and evolution of this gene family. We took advantage of the large intron size variation to find out the number of myticin-C genes. Using fragment analysis a maximum of four alleles was detected per individual at both introns in a large mussel sample suggesting a minimum of two myticin-C genes. The transmission pattern of size variants in two full-sib families was also used to ascertain the number of myticin-C genes underlying the variability observed. Results in both families were in accordance with two myticin-C genes organized in tandem. A more detailed analysis of myticin-C variation was carried out by sequencing a large sample of complementary (cDNA) and genomic DNA (gDNA) in 10 individuals. Two basic sequences were detected at most individuals and several sequences were constituted by combination of two different basic sequences, strongly suggesting somatic recombination or gene conversion. Slight within-basic sequence variation detected in all individuals was attributed to somatic mutation. Such mutations were more frequently at the C-terminal domain and mostly determined non-synonymous substitutions. The mature peptide domain showed the highest variation both in the whole cDNA and in the basic-sequence samples, which is in accordance with the pathogen recognition function associated to this domain. Although most tests suggested neutrality for myticin-C variation, evidence indicated positive selection in the mature peptide and C-terminal region. Three main highly supported clusters were observed when reconstructing phylogeny on basic sequences, meiotic recombination playing a relevant role on myticin-C evolution. This study demonstrates that mechanisms to generate molecular variation similar to that observed in vertebrates are also operating in molluscs
- …
