4,164 research outputs found
Supramolecular hierarchy among halogen and hydrogen bond donors in light-induced surface patterning
Halogen bonding, a noncovalent interaction possessing several unique features compared to the more familiar hydrogen bonding, is emerging as a powerful tool in functional materials design. Herein, we unambiguously show that one of these characteristic features, namely high directionality, renders halogen bonding the interaction of choice when developing azobenzene-containing supramolecular polymers for light-induced surface patterning. The study is conducted by using an extensive library of azobenzene molecules that differ only in terms of the bond-donor unit. We introduce a new tetrafluorophenol-containing azobenzene photoswitch capable of forming strong hydrogen bonds, and show that an iodoethynyl-containing azobenzene comes out on top of the supramolecular hierarchy to provide unprecedented photoinduced surface patterning efficiency. Specifically, the iodoethynyl motif seems highly promising in future development of polymeric optical and photoactive materials driven by halogen bonding
Square-tiled cyclic covers
A cyclic cover of the complex projective line branched at four appropriate
points has a natural structure of a square-tiled surface. We describe the
combinatorics of such a square-tiled surface, the geometry of the corresponding
Teichm\"uller curve, and compute the Lyapunov exponents of the determinant
bundle over the Teichm\"uller curve with respect to the geodesic flow. This
paper includes a new example (announced by G. Forni and C. Matheus in
\cite{Forni:Matheus}) of a Teichm\"uller curve of a square-tiled cyclic cover
in a stratum of Abelian differentials in genus four with a maximally degenerate
Kontsevich--Zorich spectrum (the only known example found previously by Forni
in genus three also corresponds to a square-tiled cyclic cover
\cite{ForniSurvey}).
We present several new examples of Teichm\"uller curves in strata of
holomorphic and meromorphic quadratic differentials with maximally degenerate
Kontsevich--Zorich spectrum. Presumably, these examples cover all possible
Teichm\"uller curves with maximally degenerate spectrum. We prove that this is
indeed the case within the class of square-tiled cyclic covers.Comment: 34 pages, 6 figures. Final version incorporating referees comments.
In particular, a gap in the previous version was corrected. This file uses
the journal's class file (jmd.cls), so that it is very similar to published
versio
Halogen bonding enhances nonlinear optical response in poled supramolecular polymers
We demonstrate that halogen bonding strongly enhances the nonlinear optical response of poled supramolecular polymer systems. We compare three nonlinear optical chromophores with similar electronic structures but different bond-donating units, and show that both the type and the strength of the noncovalent interaction between the chromophores and the polymer matrix play their own distinctive roles in the optical nonlinearity of the systems
Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmuller geodesic flow
We compute the sum of the positive Lyapunov exponents of the Hodge bundle
with respect to the Teichmuller geodesic flow. The computation is based on the
analytic Riemann-Roch Theorem and uses a comparison of determinants of flat and
hyperbolic Laplacians when the underlying Riemann surface degenerates.Comment: Minor corrections. To appear in Publications mathematiques de l'IHE
A Computer Aided Detection system for mammographic images implemented on a GRID infrastructure
The use of an automatic system for the analysis of mammographic images has
proven to be very useful to radiologists in the investigation of breast cancer,
especially in the framework of mammographic-screening programs. A breast
neoplasia is often marked by the presence of microcalcification clusters and
massive lesions in the mammogram: hence the need for tools able to recognize
such lesions at an early stage. In the framework of the GPCALMA (GRID Platform
for Computer Assisted Library for MAmmography) project, the co-working of
italian physicists and radiologists built a large distributed database of
digitized mammographic images (about 5500 images corresponding to 1650
patients) and developed a CAD (Computer Aided Detection) system, able to make
an automatic search of massive lesions and microcalcification clusters. The CAD
is implemented in the GPCALMA integrated station, which can be used also for
digitization, as archive and to perform statistical analyses. Some GPCALMA
integrated stations have already been implemented and are currently on clinical
trial in some italian hospitals. The emerging GRID technology can been used to
connect the GPCALMA integrated stations operating in different medical centers.
The GRID approach will support an effective tele- and co-working between
radiologists, cancer specialists and epidemiology experts by allowing remote
image analysis and interactive online diagnosis.Comment: 5 pages, 5 figures, to appear in the Proceedings of the 13th
IEEE-NPSS Real Time Conference 2003, Montreal, Canada, May 18-23 200
Vapor phase Beckmann rearrangement using high silica zeolite catalyst
Vapor phase Beckmann rearrangement of cyclohexanone oxime to e-caprolactam has been studied using high
silica zeolite catalysts. Catalysts with different crystal sizes and gel-ageing times have been activated by ionic
exchange in different conditions by means of a highly basic solution and a nearly neutral solution both
containing ammonium salts. Samples have been calcined at different temperatures in order modify the number
of defective sites. We observed that samples exchanged by means of a highly basic solution (pH > 10)1,2 and
calcined at a relatively lower temperature (450 C) show the most interesting catalytic results. X-ray powder
diffraction patterns of these samples show2 retention of the unit cell symmetry (orthorhombic cell) if compared
to the dried sample. NH3-TPD confirms the low acidity of high silica zeolites, however a higher amount of
desorbed ammonia is observed for the samples exchanged at higher pH and calcined at 450 C. Due to silanol
nests the IR spectra of the same samples show the formation of Si\u2013NH2 bonds which are absent in the
same material exchanged by other methods. Such sites seem to promote the high stability of the high silica
zeolite catalysts also to the regeneration which is needed to remove the heavy carbonaceous compounds
from the catalyst surface
IL-12 inhibition of endothelial cell functions and angiogenesis depends on lymphocyte-endothelial cell cross-talk.
In vivo IL-12-dependent tumor inhibition rests on the ability of IL-12 to activate a CD8-mediated cytotoxicity, inhibit angiogenesis, and cause vascular injury. Although in vivo studies have shown that such inhibition stems from complex interactions of immune cells and the production of IFN-gamma and other downstream angiostatic chemokines, the mechanisms involved are still poorly defined. Here we show that IL-12 activates an anti-angiogenic program in Con A-activated mouse spleen cells (activated spc) or human PBMC (activated PBMC). The soluble factors they release in its presence arrest the cycle of endothelial cells (EC), inhibit in vitro angiogenesis, negatively modulate the production of matrix metalloproteinase-9, and the ability of EC to adhere to vitronectin and up-regulate ICAM-1 and VCAM-1 expression. These effects do not require direct cell-cell contact, yet result from continuous interaction between activated lymphoid cells and EC. We used neutralizing Abs to show that the IFN-inducible protein-10 and monokine-induced by IFN-gamma chemokines are pivotal in inducing these effects. Experiments with nu/nu mice, nonobese diabetic-SCID mice, or activated spc enriched in specific cell subpopulations demonstrated that CD4(+), CD8(+), and NK cells are all needed to mediate the full anti-angiogenetic effect of IL-12
Apatites in Gale Crater
ChemCam is an active remote sensing instrument suite that has operated successfully on MSL since landing Aug. 6th, 2012. It uses laser pulses to remove dust and to analyze rocks up to 7 m away. Laser-induced breakdown spectroscopy (LIBS) obtains emission spectra of materials ablated from the samples in electronically excited states. The intensities of the emission lines scale with the abundances of the related element. ChemCam is sensitive to most major rock-forming elements as well as to a set of minor and trace elements such as F, Cl, Li, P, Sr, Ba, and Rb. The measured chemical composition can then be used to infer the mineralogical composition of the ablated material. Here, we report a summary of inferred apatite detections along the MSL traverse at Gale Crater. We present the geologic settings of these findings and derive some interpretations about the formation conditions of apatite in time and space
- …
