2,806 research outputs found
Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate
Electrochemical reduction of carbon dioxide (CO2RR) to formate provides an avenue to the synthesis of value-added carbon-based fuels and feedstocks powered using renewable electricity. Here, we hypothesized that the presence of sulfur atoms in the catalyst surface could promote undercoordinated sites, and thereby improve the electrochemical reduction of CO2 to formate. We explored, using density functional theory, how the incorporation of sulfur into tin may favor formate generation. We used atomic layer deposition of SnSx followed by a reduction process to synthesize sulfur-modulated tin (Sn(S)) catalysts. X-ray absorption near-edge structure (XANES) studies reveal higher oxidation states in Sn(S) compared with that of tin in Sn nanoparticles. Sn(S)/Au accelerates CO2RR at geometric current densities of 55 mA cm−2 at −0.75 V versus reversible hydrogen electrode with a Faradaic efficiency of 93%. Furthermore, Sn(S) catalysts show excellent stability without deactivation (<2% productivity change) following more than 40 hours of operation. With rapid advances in the efficient and cost-effective conversion of sunlight to electrical power, the development of storage technologies for renewable energy is even more urgent. Using renewable electricity to convert CO2 into formate simultaneously addresses the need for storage of intermittent renewable energy sources and the need to reduce greenhouse gas emissions. We report an increase of greater than 4-fold in the current density (hence the rate of reaction) in formate electrosynthesis compared with relevant controls. Our catalysts also show excellent stability without deactivation (<2% productivity change) following more than 40 hours of operation. The electrochemical reduction of carbon dioxide (CO2RR) offers a compelling route to energy storage and high-value chemical manufacture. The presence of sulfur atoms in catalyst surfaces promotes undercoordinated sites, thereby improving the electrochemical reduction of CO2 to formate. The resulting sulfur-modulated tin catalysts accelerate CO2RR at geometric current densities of 55 mA cm−2 at −0.75 V versus RHE with a Faradaic efficiency of 93%
Mapping the genetic architecture of gene expression in human liver
Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs) in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large-scale, genome-wide association study. We also identify SORT1 and CELSR2 as candidate susceptibility genes for a locus recently associated with coronary artery disease and plasma low-density lipoprotein cholesterol levels in the process. © 2008 Schadt et al
Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows
We describe a computational protocol to aid the design of small molecule and peptide drugs that target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we explore multiple strategies, including finding binding hot spots, incorporating chemical similarity and bioactivity data, and sampling similar binding sites from homologous protein complexes. We demonstrate how to combine existing interdisciplinary resources with examples of semi-automated workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant mutations, drug promiscuity, and the design of dual-effect inhibitors.Fil: Goncearenco, Alexander. National Institutes of Health; Estados UnidosFil: Li, Minghui. Soochow University; China. National Institutes of Health; Estados UnidosFil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Shoemaker, Benjamin A. National Institutes of Health; Estados UnidosFil: Panchenko, Anna R. National Institutes of Health; Estados Unido
Composite structural motifs of binding sites for delineating biological functions of proteins
Most biological processes are described as a series of interactions between
proteins and other molecules, and interactions are in turn described in terms
of atomic structures. To annotate protein functions as sets of interaction
states at atomic resolution, and thereby to better understand the relation
between protein interactions and biological functions, we conducted exhaustive
all-against-all atomic structure comparisons of all known binding sites for
ligands including small molecules, proteins and nucleic acids, and identified
recurring elementary motifs. By integrating the elementary motifs associated
with each subunit, we defined composite motifs which represent
context-dependent combinations of elementary motifs. It is demonstrated that
function similarity can be better inferred from composite motif similarity
compared to the similarity of protein sequences or of individual binding sites.
By integrating the composite motifs associated with each protein function, we
define meta-composite motifs each of which is regarded as a time-independent
diagrammatic representation of a biological process. It is shown that
meta-composite motifs provide richer annotations of biological processes than
sequence clusters. The present results serve as a basis for bridging atomic
structures to higher-order biological phenomena by classification and
integration of binding site structures.Comment: 34 pages, 7 figure
Design, synthesis and biological characterization of novel inhibitors of CD38
Human CD38 is a novel multi-functional protein that acts not only as an antigen for B-lymphocyte activation, but also as an enzyme catalyzing the synthesis of a Ca 2+ messenger molecule, cyclic ADP-ribose, from NAD +. It is well established that this novel Ca 2+ signaling enzyme is responsible for regulating a wide range of physiological functions. Based on the crystal structure of the CD38/NAD + complex, we synthesized a series of simplified N-substituted nicotinamide derivatives (Compound1-14). A number of these compounds exhibited moderate inhibition of the NAD + utilizing activity of CD38, with Compound4 showing the highest potency. The crystal structure of CD38/Compound4 complex and computer simulation of Compound7 docking to CD38 show a significant role of the nicotinamide moiety and the distal aromatic group of the compounds for substrate recognition by the active site of CD38. Biologically, we showed that both Compounds4 and 7 effectively relaxed the agonist-induced contraction of muscle preparations from rats and guinea pigs. This study is a rational design of inhibitors for CD38 that exhibit important physiological effects, and can serve as a model for future drug development. © 2011 The Royal Society of Chemistry.postprin
Oscillatory surface rheotaxis of swimming E. coli bacteria
Bacterial contamination of biological conducts, catheters or water resources
is a major threat to public health and can be amplified by the ability of
bacteria to swim upstream. The mechanisms of this rheotaxis, the reorientation
with respect to flow gradients, often in complex and confined environments, are
still poorly understood. Here, we follow individual E. coli bacteria swimming
at surfaces under shear flow with two complementary experimental assays, based
on 3D Lagrangian tracking and fluorescent flagellar labelling and we develop a
theoretical model for their rheotactic motion. Three transitions are identified
with increasing shear rate: Above a first critical shear rate, bacteria shift
to swimming upstream. After a second threshold, we report the discovery of an
oscillatory rheotaxis. Beyond a third transition, we further observe
coexistence of rheotaxis along the positive and negative vorticity directions.
A full theoretical analysis explains these regimes and predicts the
corresponding critical shear rates. The predicted transitions as well as the
oscillation dynamics are in good agreement with experimental observations. Our
results shed new light on bacterial transport and reveal new strategies for
contamination prevention.Comment: 12 pages, 5 figure
Wide-Scale Analysis of Human Functional Transcription Factor Binding Reveals a Strong Bias towards the Transcription Start Site
We introduce a novel method to screen the promoters of a set of genes with
shared biological function, against a precompiled library of motifs, and find
those motifs which are statistically over-represented in the gene set. The gene
sets were obtained from the functional Gene Ontology (GO) classification; for
each set and motif we optimized the sequence similarity score threshold,
independently for every location window (measured with respect to the TSS),
taking into account the location dependent nucleotide heterogeneity along the
promoters of the target genes. We performed a high throughput analysis,
searching the promoters (from 200bp downstream to 1000bp upstream the TSS), of
more than 8000 human and 23,000 mouse genes, for 134 functional Gene Ontology
classes and for 412 known DNA motifs. When combined with binding site and
location conservation between human and mouse, the method identifies with high
probability functional binding sites that regulate groups of biologically
related genes. We found many location-sensitive functional binding events and
showed that they clustered close to the TSS. Our method and findings were put
to several experimental tests. By allowing a "flexible" threshold and combining
our functional class and location specific search method with conservation
between human and mouse, we are able to identify reliably functional TF binding
sites. This is an essential step towards constructing regulatory networks and
elucidating the design principles that govern transcriptional regulation of
expression. The promoter region proximal to the TSS appears to be of central
importance for regulation of transcription in human and mouse, just as it is in
bacteria and yeast.Comment: 31 pages, including Supplementary Information and figure
Star forming dwarf galaxies
Star forming dwarf galaxies (SFDGs) have a high gas content and low
metallicities, reminiscent of the basic entities in hierarchical galaxy
formation scenarios. In the young universe they probably also played a major
role in the cosmic reionization. Their abundant presence in the local volume
and their youthful character make them ideal objects for detailed studies of
the initial stellar mass function (IMF), fundamental star formation processes
and its feedback to the interstellar medium. Occasionally we witness SFDGs
involved in extreme starbursts, giving rise to strongly elevated production of
super star clusters and global superwinds, mechanisms yet to be explored in
more detail. SFDGs is the initial state of all dwarf galaxies and the relation
to the environment provides us with a key to how different types of dwarf
galaxies are emerging. In this review we will put the emphasis on the exotic
starburst phase, as it seems less important for present day galaxy evolution
but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy
Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon,
September 2010, Springer Verlag, in pres
Recommended from our members
Dairy consumption and cardiometabolic diseases: systematic review and updated meta-analyses of prospective cohort studies
Purpose of Review Dairy products contain both beneficial and harmful nutrients in relation to cardiometabolic diseases. Here, we
provide the latest scientific evidence regarding the relationship between dairy products and cardiometabolic diseases by
reviewing the literature and updating meta-analyses of observational studies.
Recent Findings We updated our previous meta-analyses of cohort studies on type 2 diabetes, coronary heart disease (CHD), and
stroke with nine studies and confirmed previous results. Total dairy and low-fat dairy (per 200 g/d) were inversely associated with
a 3–4% lower risk of diabetes. Yogurt was non-linearly inversely associatedwith diabetes (RR = 0.86, 95%CI: 0.83–0.90 at 80 g/
d). Total dairy and milk were not associated with CHD (RR~1.0). An increment of 200 g of daily milk intake was associated with
an 8% lower risk of stroke.
Summary The latest scientific evidence confirmed neutral or beneficial associations between dairy products and risk of cardiometabolic
diseases
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
