1,016 research outputs found
A service-oriented admission control strategy for class-based IP networks
The clear trend toward the integration of current and emerging applications and services in the Internet launches new demands on service deployment and management. Distributed service-oriented traffic control mechanisms, operating with minimum impact on network performance, assume a crucial role as regards controlling services quality and network resources transparently and efficiently.
In this paper, we describe and specify a lightweight distributed admission control (AC) model based on per-class monitoring feedback for ensuring the quality of distinct service levels in multiclass and multidomain environments. The model design, covering explicit and implicit AC, exhibits relevant properties that allow managing quality of service (QoS) and service-level specifications (SLSs) in multiservice IP networks in a flexible and scalable manner.
These properties, stemming from the way service-dependent AC and on-line service performance monitoring are proposed and articulated in the model’s architecture and operation, allow a self-adaptive service and resource management, while abstracting from network core complexity and heterogeneity. A proof of concept is provided to illustrate the AC criteria ability in satisfying multiple service class commitments efficiently.
The obtained results show that the self-adaptive behavior inherent to on-line measurement-based service management, combined with the established AC rules, is effective in controlling each class QoS and SLS commitments consistently
Alien Registration- Freitas, John, Sr. (Augusta, Kennebec County)
https://digitalmaine.com/alien_docs/18385/thumbnail.jp
On Composite Two Higgs Doublet Models
We investigate composite two Higgs doublet models realized as pseudo
Goldstone modes, generated through the spontaneous breaking of a global
symmetry due to strong dynamic at the TeV scale. A detailed comparative survey
of two possible symmetry breaking patterns, SU(5) -> SU(4) x U(1) and SU(5) x
SU(4), is made. We point out choices for the Standard Model fermion
representations that can alleviate some phenomenological constraints, with
emphasis towards a simultaneous solution of anomalous Zb\bar{b} coupling and
Higgs mediated Flavor Changing Neutral Currents. We also write down the kinetic
lagrangian for several models leading to Two Higgs Doublets and identify the
anomalous contributions to the T parameter. Moreover, we describe a model based
on the breaking in which there is no tree-level breaking of
custodial symmetry, discussing also the possible embeddings for the fermion
fields.Comment: 17 pages. Mistake corrected, added one section on a T- and flavor
safe model based on SO(9)/SO(8). Matches published versio
T-parity, its problems and their solution
We point out a basic difficulty in the construction of little-Higgs models
with T-parity which is overlooked by large part of the present literature.
Almost all models proposed so far fail to achieve their goal: they either
suffer from sizable electroweak corrections or from a breakdown of collective
breaking. We provide a model building recipe to bypass the above problem and
apply it to build the simplest T-invariant extension of the Littlest Higgs. Our
model predicts additional T-odd pseudo-Goldstone bosons with weak scale masses.Comment: 25 pages, 2 appendice
The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum
The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders
UV friendly T-parity in the SU(6)/Sp(6) little Higgs model
Electroweak precision tests put stringent constraints on the parameter space
of little Higgs models. Tree-level exchange of TeV scale particles in a generic
little Higgs model produce higher dimensional operators that make contributions
to electroweak observables that are typically too large. To avoid this problem
a discrete symmetry dubbed T-parity can be introduced to forbid the dangerous
couplings. However, it was realized that in simple group models such as the
littlest Higgs model, the implementation of T-parity in a UV completion could
present some challenges. The situation is analogous to the one in QCD where the
pion can easily be defined as being odd under a new symmetry in the
chiral Lagrangian, but this is not a symmetry of the quark Lagrangian. In
this paper we examine the possibility of implementing a T-parity in the low
energy model that might be easier to realize in the UV. In our
model, the T-parity acts on the low energy non-linear sigma model field in way
which is different to what was originally proposed for the Littlest Higgs, and
lead to a different low energy theory. In particular, the Higgs sector of this
model is a inert two Higgs doublets model with an approximate custodial
symmetry. We examine the contributions of the various sectors of the model to
electroweak precision data, and to the dark matter abundance.Comment: 21 pages,4 figures. Clarifications added, typos corrected and
references added. Published in JHE
Strong interface-induced spin-orbit coupling in graphene on WS2
Interfacial interactions allow the electronic properties of graphene to be
modified, as recently demonstrated by the appearance of satellite Dirac cones
in the band structure of graphene on hexagonal boron nitride (hBN) substrates.
Ongoing research strives to explore interfacial interactions in a broader class
of materials in order to engineer targeted electronic properties. Here we show
that at an interface with a tungsten disulfide (WS2) substrate, the strength of
the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The
induced SOI leads to a pronounced low-temperature weak anti-localization (WAL)
effect, from which we determine the spin-relaxation time. We find that
spin-relaxation time in graphene is two-to-three orders of magnitude smaller on
WS2 than on SiO2 or hBN, and that it is comparable to the intervalley
scattering time. To interpret our findings we have performed first-principle
electronic structure calculations, which both confirm that carriers in
graphene-on-WS2 experience a strong SOI and allow us to extract a
spin-dependent low-energy effective Hamiltonian. Our analysis further shows
that the use of WS2 substrates opens a possible new route to access topological
states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines.
Final version with expanded discussion of the relation between theory and
experiments to be published in Nature Communication
The Genomic Signature of Crop-Wild Introgression in Maize
The evolutionary significance of hybridization and subsequent introgression
has long been appreciated, but evaluation of the genome-wide effects of these
phenomena has only recently become possible. Crop-wild study systems represent
ideal opportunities to examine evolution through hybridization. For example,
maize and the conspecific wild teosinte Zea mays ssp. mexicana, (hereafter,
mexicana) are known to hybridize in the fields of highland Mexico. Despite
widespread evidence of gene flow, maize and mexicana maintain distinct
morphologies and have done so in sympatry for thousands of years. Neither the
genomic extent nor the evolutionary importance of introgression between these
taxa is understood. In this study we assessed patterns of genome-wide
introgression based on 39,029 single nucleotide polymorphisms genotyped in 189
individuals from nine sympatric maize-mexicana populations and reference
allopatric populations. While portions of the maize and mexicana genomes were
particularly resistant to introgression (notably near known
cross-incompatibility and domestication loci), we detected widespread evidence
for introgression in both directions of gene flow. Through further
characterization of these regions and preliminary growth chamber experiments,
we found evidence suggestive of the incorporation of adaptive mexicana alleles
into maize during its expansion to the highlands of central Mexico. In
contrast, very little evidence was found for adaptive introgression from maize
to mexicana. The methods we have applied here can be replicated widely, and
such analyses have the potential to greatly informing our understanding of
evolution through introgressive hybridization. Crop species, due to their
exceptional genomic resources and frequent histories of spread into sympatry
with relatives, should be particularly influential in these studies
Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli
Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins. Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets
Hygienic characteristics of radishes grown in soil contaminated with Stenotrophomonas maltophilia
Background: Stenotrophomonas maltophilia is a plant growth-promoter. This bacterium is also implicated in human
diseases. Thus, after the use of this bacterium in agriculture, the safety of the final products has to be verified. Due to
the ubiquitous presence of S. maltophilia in soil, in this study a massive contamination was simulated to evaluate the
growth and safety of Raphanus sativus L..
Results: Different inoculums and soil treatment conditions were tested. Soils were analysed weekly and the radishes
at harvest for their microbial loads and presence/persistence of S. maltophilia LMG 6606. The concentration of the
bacterium added in the different trials decreased during the first week, but increased thereafter and determined a
significant increase of growth parameters of radishes.
Conclusions: The addition of S. maltophilia LMG 6606 to non-autoclaved soil enhanced the productivity of radishes.
The bacterium did not internalize in the hypocotyls, but colonized the external surface ensuring the safety of the
products. Thus, a sanitizing bath of hypocotyls before consumption is necessary
- …
