8,531 research outputs found
Recommended from our members
SEASONAL-VARIATIONS IN THE ATMOSPHERIC DISTRIBUTION OF A REACTIVE CHLORINE COMPOUND, TETRACHLOROETHENE (CCL2=CCL2)
Recommended from our members
Seasonal variation of tropospheric methyl bromide concentrations: Constraints on anthropogenic input
Although removal of tropospheric methyl bromide (CH3Br) is dominated by the reaction with the seasonally varying hydroxyl (HO) radical concentration, the anticipated corresponding seasonal dependence of CH3Br, as found for other gases with major HO sinks, has been sought previously without success [WMO, 1995]. Our observations of northern hemispheric boundary layer CH3Br concentrations do reveal substantial seasonal changes. The high latitude CH3Br North/South interhemispheric concentration ratio (IHR) varies from a maximum of 1.35±0.04 (1σ) in March-April to 1.10±0.04 in September, with an equal area and seasonally (EAS) weighted average IHR of 1.21±0.03. These observations suggest northern hemispheric emissions are about 15 kilotons/year less than when an IHR of 1.3 is considered [WMO, 1995]. The observed seasonality also partially explains the differences in the IHR reported by several research groups [WMO, 1995] and places needed constraints on the magnitude and seasonality of sources and sinks of CH3Br
VIENA2: A Driving Anticipation Dataset
Action anticipation is critical in scenarios where one needs to react before
the action is finalized. This is, for instance, the case in automated driving,
where a car needs to, e.g., avoid hitting pedestrians and respect traffic
lights. While solutions have been proposed to tackle subsets of the driving
anticipation tasks, by making use of diverse, task-specific sensors, there is
no single dataset or framework that addresses them all in a consistent manner.
In this paper, we therefore introduce a new, large-scale dataset, called
VIENA2, covering 5 generic driving scenarios, with a total of 25 distinct
action classes. It contains more than 15K full HD, 5s long videos acquired in
various driving conditions, weathers, daytimes and environments, complemented
with a common and realistic set of sensor measurements. This amounts to more
than 2.25M frames, each annotated with an action label, corresponding to 600
samples per action class. We discuss our data acquisition strategy and the
statistics of our dataset, and benchmark state-of-the-art action anticipation
techniques, including a new multi-modal LSTM architecture with an effective
loss function for action anticipation in driving scenarios.Comment: Accepted in ACCV 201
Recommended from our members
Three-dimensional distribution of nonmenthane hydrocarbons and halocarbons over the northwestern Pacific during the 1991 Pacific Exploratory Mission (PEM-West A)
A total of 1667 whole air samples were collected onboard the NASA DC-8 aircraft during the 6-week Pacific Exploratory Mission over the western Pacific (PEM-West A) in September and October 1991. The samples were assayed for 15 C2-C7 hydrocarbons and six halocarbons. Latitudinal (0.5°S to 59.5°N) and longitudinal (114°E to 122°W) profiles were obtained from samples collected between ground level and 12.7 km. Thirteen of the 18 missions exhibited at least one vertical profile where the hydrocarbon mixing ratios increased with altitude. Longitude-latitude color patch plots at three altitude levels and three-dimensional color latitudealtitude and longitude-altitude contour plots exhibit a significant number of middle-upper tropospheric pollution events. These and several lower tropospheric pollution plumes were characterized by comparison with urban data from Tokyo and Hong Kong, as well as with natural gas and the products from incomplete combustion. Elevated levels of nonmethane hydrocarbons (NMHC) and other trace gases in the upper-middle free troposphere were attributed to deep convection over the Asian continent and to typhoon-driven convection near the western Pacific coast of Asia. In addition, NMHCs and CH3CCI3 were found to be useful tracers with which to distinguish hydrocarbon and halocarbon augmented plumes emitted from coastal Asian cities into the northwestern Pacific
Reply to "Comment on 'Long-term atmospheric measurements of C1-C5 alkyl nitrates in the Pearl River Delta region of southeast China'"
Department of Civil and Environmental Engineerin
Few-Shot Single-View 3-D Object Reconstruction with Compositional Priors
The impressive performance of deep convolutional neural networks in
single-view 3D reconstruction suggests that these models perform non-trivial
reasoning about the 3D structure of the output space. However, recent work has
challenged this belief, showing that complex encoder-decoder architectures
perform similarly to nearest-neighbor baselines or simple linear decoder models
that exploit large amounts of per category data in standard benchmarks. On the
other hand settings where 3D shape must be inferred for new categories with few
examples are more natural and require models that generalize about shapes. In
this work we demonstrate experimentally that naive baselines do not apply when
the goal is to learn to reconstruct novel objects using very few examples, and
that in a \emph{few-shot} learning setting, the network must learn concepts
that can be applied to new categories, avoiding rote memorization. To address
deficiencies in existing approaches to this problem, we propose three
approaches that efficiently integrate a class prior into a 3D reconstruction
model, allowing to account for intra-class variability and imposing an implicit
compositional structure that the model should learn. Experiments on the popular
ShapeNet database demonstrate that our method significantly outperform existing
baselines on this task in the few-shot setting
Source origins, modeled profiles, and apportionments of halogenated hydrocarbons in the greater Pearl River Delta region, southern China
We analyze 16-month data of 13 major halocarbons measured at a southern China coastal site in the greater Pearl River Delta (PRD). A total of 188 canister air samples were collected from August 2001 to December 2002. Overall inspection indicated that CH2Cl2, C2Cl 4, and C2HCl3 had similar temporal variations while CFC-11, CFC-12, and CFC-113 showed the same emission patterns during the sampling period. Diurnal variations of halocarbons presented different patterns during ozone episode days, mainly related to emission strength, atmospheric dispersion, and photochemical lifetimes. For further statistics and source appointment, Lagrangian backward particle release simulations were conducted to help understand the potential source regions of all samples and classify them into different categories, including local Hong Kong, inner PRD, continental China, and marine air masses. With the exception of HCFC-142b, the mixing ratios of all halocarbons in marine air were significantly lower than those in urban and regional air (p < 0.01), whereas no significant difference was found between urban Hong Kong and inner PRD regional air, reflecting the dominant impact of the greater PRD regional air on the halocarbon levels. The halocarbon levels in this region were significantly influenced by anthropogenic sources, causing the halocarbon mixing ratios in South China Sea air to be higher than the corresponding background levels, as measured by global surface networks and by airborne missions such as Transport and Chemical Evolution Over the Pacific. Interspecies correlation analysis suggests that CHCl3 is mainly used as a solvent in Hong Kong but mostly as a feedstock for HCFC-22 in the inner PRD. Furthermore, CH3Cl is often used as a refrigerant and emitted from biomass/biofuel burning in the inner PRD. A positive matrix factorization receptor model was applied to the classified halocarbon samples in the greater PRD for source profiles and apportionments. Seven major sources were identified and quantified. Emissions from solvent use were the most significant source of halocarbons (71 ± 9%), while refrigeration was the second largest contributor (18 ± 2%). By further looking at samples from the inner PRD and from urban Hong Kong separately, we found that more solvent was used in the dry cleaning industry in Hong Kong, whereas the contribution of cleaning solvent in the electronic industry was higher in the inner PRD. Besides the two common sources of solvent use and refrigeration, the contributions of biomass/biofuel burning and feedstock in chemical manufacturing was remarkable in the inner PRD but negligible in Hong Kong. These findings are of help to effectively control and phase out the emissions of halocarbons in the greater PRD region of southern China Copyright 2009 by the American Geophysical Union
Fission yeast mitochondria are distributed by dynamic microtubules in a motor-independent manner
The cytoskeleton plays a critical role in regulating mitochondria distribution. Similar to axonal mitochondria, the fission yeast mitochondria are distributed by the microtubule cytoskeleton, but this is regulated by a motor-independent mechanism depending on the microtubule associated protein mmb1p as the absence of mmb1p causes mitochondria aggregation. In this study, using a series of chimeric proteins to control the subcellular localization and motility of mitochondria, we show that a chimeric molecule containing a microtubule binding domain and the mitochondria outer membrane protein tom22p can restore the normal interconnected mitochondria network in mmb1-deletion (mmb1∆) cells. In contrast, increasing the motility of mitochondria by using a chimeric molecule containing a kinesin motor domain and tom22p cannot rescue mitochondria aggregation defects in mmb1∆ cells. Intriguingly a chimeric molecule carrying an actin binding domain and tom22p results in mitochondria associated with actin filaments at the actomyosin ring during mitosis, leading to cytokinesis defects. These findings suggest that the passive motor-independent microtubule-based mechanism is the major contributor to mitochondria distribution in wild type fission yeast cells. Hence, we establish that attachment to microtubules, but not kinesin-dependent movement and the actin cytoskeleton, is required and crucial for proper mitochondria distribution in fission yeast.published_or_final_versio
- …
