7,069 research outputs found
Fabrication of cm scale buckypapers of horizontally aligned multiwalled carbon nanotubes highly filled with Fe3C: the key roles of Cl and Ar-flow rates
A key challenge in the fabrication of ferromagnetically filled carbon-nanotube buckypapers in the presence of Cl-radicals is the achievement of a preferential horizontal nanotube-alignment.</p
Improving corporate governance in state-owned corporations in China: which way forward?
This article discusses corporate governance in China. It outlines the basic agency problem in Chinese listed companies and questions the effectiveness of the current mechanisms employed to improve their standards of governance. Importantly, it considers alternative means through which corporate practice in China can be brought into line with international expectations and stresses the urgency with which this task must be tackled. It concludes that regulators in China must construct a corporate governance model which is compatible with its domestic setting and not rush to adopt governance initiatives modelled on those in cultures which are fundamentally different in the hope of also reproducing their success
Characterizing hypervelocity impact (HVI)-induced pitting damage using active guided ultrasonic waves : from linear to nonlinear
2016-2017 > Academic research: refereed > Publication in refereed journal201804_a bcmaVersion of RecordPublishe
Coherent spinor dynamics in a spin-1 Bose condensate
Collisions in a thermal gas are perceived as random or incoherent as a
consequence of the large numbers of initial and final quantum states accessible
to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a
degenerate Fermi gas, the phase space accessible to low energy collisions is so
restricted that collisions be-come coherent and reversible. Here, we report the
observation of coherent spin-changing collisions in a gas of spin-1 bosons.
Starting with condensates occupying two spin states, a condensate in the third
spin state is coherently and reversibly created by atomic collisions. The
observed dynamics are analogous to Josephson oscillations in weakly connected
superconductors and represent a type of matter-wave four-wave mixing. The
spin-dependent scattering length is determined from these oscillations to be
-1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of
the system by applying differential phase shifts to the spin states using
magnetic fields.Comment: 19 pages, 3 figure
Self-assembly of Microcapsules via Colloidal Bond Hybridization and Anisotropy
Particles with directional interactions are promising building blocks for new
functional materials and may serve as models for biological structures.
Mutually attractive nanoparticles that are deformable due to flexible surface
groups, for example, may spontaneously order themselves into strings, sheets
and large vesicles. Furthermore, anisotropic colloids with attractive patches
can self-assemble into open lattices and colloidal equivalents of molecules and
micelles. However, model systems that combine mutual attraction, anisotropy,
and deformability have---to the best of our knowledge---not been realized.
Here, we synthesize colloidal particles that combine these three
characteristics and obtain self-assembled microcapsules. We propose that mutual
attraction and deformability induce directional interactions via colloidal bond
hybridization. Our particles contain both mutually attractive and repulsive
surface groups that are flexible. Analogous to the simplest chemical bond,
where two isotropic orbitals hybridize into the molecular orbital of H2, these
flexible groups redistribute upon binding. Via colloidal bond hybridization,
isotropic spheres self-assemble into planar monolayers, while anisotropic
snowman-like particles self-assemble into hollow monolayer microcapsules. A
modest change of the building blocks thus results in a significant leap in the
complexity of the self-assembled structures. In other words, these relatively
simple building blocks self-assemble into dramatically more complex structures
than similar particles that are isotropic or non-deformable
Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles
Iron micro- and nanoparticles used for groundwater remediation and medical applications are prone to fast aggregation and sedimentation. Diluted single biopolymer water solutions of guar gum (GG) or xanthan gum (XG) can stabilize these particles for few hours providing steric repulsion and by increasing the viscosity of the suspension. The goal of the study is to demonstrate that amending GG solutions with small amounts of XG (XG/GG weight ratio 1:19; 3 g/L of total biopolymer concentration) can significantly improve the capability of the biopolymer to stabilize highly concentrated iron micro- and nanoparticle suspensions. The synergistic effect between GG and XG generates a viscoelastic gel that can maintain 20 g/L iron particles suspended for over 24 h. This is attributed to (i) an increase in the static viscosity, (ii) a combined polymer structure the yield stress of which contrasts the downward stress exerted by the iron particles, and (iii) the adsorption of the polymers to the iron surface having an anchoring effect on the particles. The XG/GG viscoelastic gel is characterized by a marked shear thinning behavior. This property, coupled with the low biopolymer concentration, determines small viscosity values at high shear rates, facilitating the injection in porous media. Furthermore, the thermosensitivity of the soft elastic polymeric network promotes higher stability and longer storage times at low temperatures and rapid decrease of viscosity at higher temperatures. This feature can be exploited in order to improve the flowability and the delivery of the suspensions to the target as well as to effectively tune and control the release of the iron particle
Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging
Free-standing Ge quantum dots around 3 nm in size were synthesized using a bench-top colloidal method and suspended in water and ethanol. In the ethanol solution, the photoluminescence of the Ge quantum dots was observed between 650 and 800 nm. Structural and optical properties of these colloidal Ge quantum dots were investigated by utilizing X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and photoluminescence spectroscopy and transmission electron microscopy. The structure of the as-prepared Ge quantum dots that were found is best described by a core-shell model with a small crystalline core and an amorphous outer shell with a surface that was terminated by hydrogen-related species. As-prepared Ge quantum dots were suspended in cell growth medium, and then loaded into cervical carcinoma (HeLa) cells. The fluorescent microscopy images were then collected using 405 nm, 488 nm, 561 nm and 647 nm wavelengths. We observed that, based on fluorescence measurements, as-prepared Ge quantum dots can remain stable for up to 4 weeks in water. Investigation of toxicity, based on a viability test, of as-prepared uncoated Ge quantum dots in HeLa cells was carried out and compared with the commercial carboxyl coated CdSe/ZnSe quantum dots. The viability tests show that Ge quantum dots are less toxic when compared to commercial carboxyl coated CdSe/ZnS quantum dots. This journal i
Kinetics of mycolactone in human subcutaneous tissue during antibiotic therapy for Mycobacterium ulcerans disease.
BACKGROUND: Mycobacterium ulcerans (M. ulcerans) causes a devastating necrotising infection of skin tissue leading to progressive ulceration. M. ulcerans is the only human pathogen that secretes mycolactone, a polyketide molecule with potent cytotoxic and immunomodulatory properties. These unique features make mycolactone an attractive biomarker for M. ulcerans disease. We sought to measure the concentration of mycolactone within lesions of patients with Buruli ulcer before, during and after antibiotic treatment to evaluate its association with the clinical and bacteriological response to therapy. METHODS: Biopsies of M. ulcerans infected skin lesions were obtained from patients before, during and after antibiotic therapy. Lipids were extracted from the biopsies and concentration of mycolactone was assayed by mass spectrometry and a cytotoxicity assay and correlated with clinical and bacteriological response to therapy.
RESULTS: Baseline concentration of mycolactone measured by mass spectrometry predicted time to complete healing of small nodules and ulcers. Even though intra-lesional concentrations of mycolactone declined with antibiotic treatment, the toxin was still present after antibiotic treatment for 6 weeks and also 4 weeks after the end of treatment for 8 weeks in a subgroup of patients with slowly healing lesions. Additionally viable bacilli were detected in a proportion of these slowly healing lesions during and after treatment.
CONCLUSIONS: Our findings indicate that baseline intra-lesional mycolactone concentration and its kinetics with antibiotic therapy are important prognostic determinants of clinical and bacteriological response to antibiotic treatment for Mycobacterium ulcerans disease. Mycolactone may be a useful biomarker with potential utility in optimising antibiotic therapy
Microbiological, histological, immunological, and toxin response to antibiotic treatment in the mouse model of Mycobacterium ulcerans disease.
Mycobacterium ulcerans infection causes a neglected tropical disease known as Buruli ulcer that is now found in poor rural areas of West Africa in numbers that sometimes exceed those reported for another significant mycobacterial disease, leprosy, caused by M. leprae. Unique among mycobacterial diseases, M. ulcerans produces a plasmid-encoded toxin called mycolactone (ML), which is the principal virulence factor and destroys fat cells in subcutaneous tissue. Disease is typically first manifested by the appearance of a nodule that eventually ulcerates and the lesions may continue to spread over limbs or occasionally the trunk. The current standard treatment is 8 weeks of daily rifampin and injections of streptomycin (RS). The treatment kills bacilli and wounds gradually heal. Whether RS treatment actually stops mycolactone production before killing bacilli has been suggested by histopathological analyses of patient lesions. Using a mouse footpad model of M. ulcerans infection where the time of infection and development of lesions can be followed in a controlled manner before and after antibiotic treatment, we have evaluated the progress of infection by assessing bacterial numbers, mycolactone production, the immune response, and lesion histopathology at regular intervals after infection and after antibiotic therapy. We found that RS treatment rapidly reduced gross lesions, bacterial numbers, and ML production as assessed by cytotoxicity assays and mass spectrometric analysis. Histopathological analysis revealed that RS treatment maintained the association of the bacilli with (or within) host cells where they were destroyed whereas lack of treatment resulted in extracellular infection, destruction of host cells, and ultimately lesion ulceration. We propose that RS treatment promotes healing in the host by blocking mycolactone production, which favors the survival of host cells, and by killing M. ulcerans bacilli
- …
