124 research outputs found

    Microdevices for extensional rheometry of low viscosity elastic liquids : a review

    Get PDF
    Extensional flows and the underlying stability/instability mechanisms are of extreme relevance to the efficient operation of inkjet printing, coating processes and drug delivery systems, as well as for the generation of micro droplets. The development of an extensional rheometer to characterize the extensional properties of low viscosity fluids has therefore stimulated great interest of researchers, particularly in the last decade. Microfluidics has proven to be an extraordinary working platform and different configurations of potential extensional microrheometers have been proposed. In this review, we present an overview of several successful designs, together with a critical assessment of their capabilities and limitations

    Radiative and magnetohydrodynamics flow of third grade viscoelastic fluid past an isothermal inverted cone in the presence of heat generation/absorption

    Get PDF
    A mathematical analysis is presented to investigate the nonlinear, isothermal, steady-state, free convection boundary layer flow of an incompressible third grade viscoelastic fluid past an isothermal inverted cone in the presence of magnetohydrodynamic, thermal radiation and heat generation/absorption. The transformed conservation equations for linear momentum, heat and mass are solved numerically subject to the realistic boundary conditions using the second-order accurate implicit finite-difference Keller Box Method. The numerical code is validated with previous studies. Detailed interpretation of the computations is included. The present simulations are of interest in chemical engineering systems and solvent and low-density polymer materials processing

    Dendritic Cells Transfected with scFv from Mab 7.B12 Mimicking Original Antigen gp43 Induces Protection against Experimental Paracoccidioidomycosis

    Get PDF
    Paracoccidioidomycosis (PCM), endemic in Latin America, is a progressive systemic mycosis caused by Paracoccidioides brasiliensis (P. brasiliensis), which primarily attacks lung tissue. Dendritic cells (DCs) are able to initiate a response in naïve T cells, and they also participate in Th-cell education. Furthermore, these cells have been used for therapy in several disease models. Here we transfected DCs with a plasmid (pMAC/PS-scFv) encoding a single chain variable fragment (scFv) of an anti-Id antibody that is capable of mimicking gp43, the main antigenic component of P. brasiliensis. First, Balb/c mice were immunized subcutaneously with pMAC/PS-scFv and, after seven days, scFv protein was presented to the regional lymph nodes cells. Moreover, we showed that the DCs transfected with scFv were capable of efficiently activating proliferation of total lymph node cells and inducing a decrease in lung infection. Therefore, our results suggested that the use of scFv-transfected DCs may be a promising therapy in the paracoccidioidomycosis (PCM) model

    Extravasation of leukocytes in comparison to tumor cells

    Get PDF
    The multi-step process of the emigration of cells from the blood stream through the vascular endothelium into the tissue has been termed extravasation. The extravasation of leukocytes is fairly well characterized down to the molecular level, and has been reviewed in several aspects. Comparatively little is known about the extravasation of tumor cells, which is part of the hematogenic metastasis formation. Although the steps of the process are basically the same in leukocytes and tumor cells, i.e. rolling, adhesion, transmigration (diapedesis), the molecules that are involved are different. A further important difference is that leukocyte interaction with the endothelium changes the endothelial integrity only temporarily, whereas tumor cell interaction leads to an irreversible damage of the endothelial architecture. Moreover, tumor cells utilize leukocytes for their extravasation as linkers to the endothelium. Thus, metastasis formation is indirectly susceptible to localization signals that are literally specific for the immune system. We herein compare the extravasation of leukocytes and tumor cells with regard to the involved receptors and the localization signals that direct the cells to certain organs and sites of the body

    Grazing effects on microbial community composition, growth and nutrient cycling in salt marsh and sand dune grasslands

    Get PDF
    The effect of grazing by large herbivores on the microbial community and the ecosystem functions they provide are relatively unknown in grassland systems. In this study, the impact of grazing upon the size, composition and activity of the soil microbial community was measured in field experiments in two coastal ecosystems: one salt marsh and one sand dune grassland. Bacterial, fungal and total microbial biomass were not systematically affected by grazing across ecosystems, although, within an ecosystem, differences could be detected. Fungal-to-bacterial ratio did not differ with grazing for either habitat. Redundancy analysis showed that soil moisture, bulk density and root biomass significantly explained the composition of phospholipid fatty acid (PLFA) markers, dominated by the distinction between the two grassland habitats, but where the grazing effect could also be resolved. PLFA markers for Gram-positive bacteria were more proportionally abundant in un-grazed, and markers for Gram-negative bacteria in grazed grasslands. Bacterial growth rate (leucine incorporation) was highest in un-grazed salt marsh but did not vary with grazing intensity in the sand dune grassland. We conclude that grazing consistently affects the composition of the soil microbial community in seminatural grasslands but that its influence is small (7 % of the total variation in PLFA composition), compared with differences between grassland types (89 %). The relatively small effect of grazing translated to small effects on measurements of soil microbial functions, including N and C mineralisation. This study is an early step toward assessing consequences of land-use change for global nutrient cycles driven by the microbial community
    corecore