203 research outputs found
Immunosenescence and lymphomagenesis
One of the most important determinants of aging-related changes is a complex biological process emerged recently and called \u201cimmunosenescence\u201d. Immunosenescence refers to the inability of an aging immune system to produce an appropriate and effective response to challenge. This immune dysregulation may manifest as increased susceptibility to infection, cancer, autoimmune disease, and vaccine failure. At present, the relationship between immunosenescence and lymphoma in elderly patients is not defined in a satisfactory way. This review presents a brief overview of the interplay between aging, cancer and lymphoma, and the key topic of immunosenescence is addressed in the context of two main lymphoma groups, namely Non Hodgkin Lymphoma (NHL) and Hodgkin Lymphoma (HL). Epstein Barr Virus (EBV) plays a central role in the onset of neoplastic lymphoproliferation associated with immunological changes in aging, although the pathophysiology varies vastly among different disease entities. The interaction between immune dysfunction, immunosenescence and Epstein Barr Virus (EBV) infection appears to differ between NHL and HL, as well as between NHL subtypes
Quantitative Modeling of GRK-Mediated β2AR Regulation
We developed a unified model of the GRK-mediated β2 adrenergic receptor (β2AR) regulation that simultaneously accounts for six different biochemical measurements of the system obtained over a wide range of agonist concentrations. Using a single deterministic model we accounted for (1) GRK phosphorylation in response to various full and partial agonists; (2) dephosphorylation of the GRK site on the β2AR; (3) β2AR internalization; (4) recycling of the β2AR post isoproterenol treatment; (5) β2AR desensitization; and (6) β2AR resensitization. Simulations of our model show that plasma membrane dephosphorylation and recycling of the phosphorylated receptor are necessary to adequately account for the measured dephosphorylation kinetics. We further used the model to predict the consequences of (1) modifying rates such as GRK phosphorylation of the receptor, arrestin binding and dissociation from the receptor, and receptor dephosphorylation that should reflect effects of knockdowns and overexpressions of these components; and (2) varying concentration and frequency of agonist stimulation “seen” by the β2AR to better mimic hormonal, neurophysiological and pharmacological stimulations of the β2AR. Exploring the consequences of rapid pulsatile agonist stimulation, we found that although resensitization was rapid, the β2AR system retained the memory of the previous stimuli and desensitized faster and much more strongly in response to subsequent stimuli. The latent memory that we predict is due to slower membrane dephosphorylation, which allows for progressive accumulation of phosphorylated receptor on the surface. This primes the receptor for faster arrestin binding on subsequent agonist activation leading to a greater extent of desensitization. In summary, the model is unique in accounting for the behavior of the β2AR system across multiple types of biochemical measurements using a single set of experimentally constrained parameters. It also provides insight into how the signaling machinery can retain memory of prior stimulation long after near complete resensitization has been achieved
Quantitative Analysis and Comparison Study of [18F]AlF-NOTA-PRGD2, [18F]FPPRGD2 and [68Ga]Ga-NOTA-PRGD2 Using a Reference Tissue Model
With favorable pharmacokinetics and binding affinity for αvβ3 integrin, 18F-labeled dimeric cyclic RGD peptide ([18F]FPPRGD2) has been intensively used as a PET imaging probe for lesion detection and therapy response monitoring. A recently introduced kit formulation method, which uses an 18F-fluoride-aluminum complex labeled RGD tracer ([18F]AlF-NOTA-PRGD2), provides a strategy for simplifying the labeling procedure to facilitate clinical translation. Meanwhile, an easy-to-prepare 68Ga-labeled NOTA-PRGD2 has also been reported to have promising properties for imaging integrin αvβ3. The purpose of this study is to quantitatively compare the pharmacokinetic parameters of [18F]FPPRGD2, [18F]AlF-NOTA-PRGD2, and [68Ga]Ga-NOTA-PRGD2. U87MG tumor-bearing mice underwent 60-min dynamic PET scans following the injection of three tracers. Kinetic parameters were calculated using Logan graphical analysis with reference tissue. Parametric maps were generated using voxel-level modeling. All three compounds showed high binding potential (BpND = k3/k4) in tumor voxels. [18F]AlF-NOTA-PRGD2 showed comparable BpND value (3.75±0.65) with those of [18F]FPPRGD2 (3.39±0.84) and [68Ga]Ga-NOTA-PRGD2 (3.09±0.21) (p>0.05). Little difference was found in volume of distribution (VT) among these three RGD tracers in tumor, liver and muscle. Parametric maps showed similar kinetic parameters for all three tracers. We also demonstrated that the impact of non-specific binding could be eliminated in the kinetic analysis. Consequently, kinetic parameter estimation showed more comparable results among groups than static image analysis. In conclusion, [18F]AlF-NOTA-PRGD2 and [68Ga]Ga-NOTA-PRGD2 have comparable pharmacokinetics and quantitative parameters compared to those of [18F]FPPRGD2. Despite the apparent difference in tumor uptake (%ID/g determined from static images) and clearance pattern, the actual specific binding component extrapolated from kinetic modeling appears to be comparable for all three dimeric RGD tracers
Tripotential Differentiation of Adherently Expandable Neural Stem (NS) Cells
BACKGROUND: A recent study has shown that pure neural stem cells can be derived from embryonic stem (ES) cells and primary brain tissue. In the presence of fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF), this population can be continuously expanded in adherent conditions. In analogy to continuously self-renewing ES cells, these cells were termed ‘NS’ cells (Conti et al., PLoS Biol 3: e283, 2005). While NS cells have been shown to readily generate neurons and astrocytes, their differentiation into oligodendrocytes has remained enigmatic, raising concerns as to whether they truly represent tripotential neural stem cells. METHODOLOGY/PRINCIPAL FINDINGS: Here we provide evidence that NS cells are indeed tripotent. Upon proliferation with FGF2, platelet-derived growth factor (PDGF) and forskolin, followed by differentiation in the presence of thyroid hormone (T3) and ascorbic acid NS cells efficiently generate oligodendrocytes (∼20%) alongside astrocytes (∼40%) and neurons (∼10%). Mature oligodendroglial differentiation was confirmed by transplantation data showing that NS cell-derived oligodendrocytes ensheath host axons in the brain of myelin-deficient rats. CONCLUSIONS/SIGNIFICANCE: In addition to delineating NS cells as a potential donor source for myelin repair, our data strongly support the view that these adherently expandable cells represent bona fide tripotential neural stem cells
Problems with Using the Normal Distribution – and Ways to Improve Quality and Efficiency of Data Analysis
Background: The Gaussian or normal distribution is the most established model to characterize quantitative variation of original data. Accordingly, data are summarized using the arithmetic mean and the standard deviation, by x 6 SD, or with the standard error of the mean, x 6 SEM. This, together with corresponding bars in graphical displays has become the standard to characterize variation. Methodology/Principal Findings: Here we question the adequacy of this characterization, and of the model. The published literature provides numerous examples for which such descriptions appear inappropriate because, based on the ‘‘95 % range check’’, their distributions are obviously skewed. In these cases, the symmetric characterization is a poor description and may trigger wrong conclusions. To solve the problem, it is enlightening to regard causes of variation. Multiplicative causes are by far more important than additive ones, in general, and benefit from a multiplicative (or log-) normal approach. Fortunately, quite similar to the normal, the log-normal distribution can now be handled easily and characterized at the level of the original data with the help of both, a new sign, x /, times-divide, and notation. Analogous to x 6 SD, it connects the multiplicative (or geometric) mean x * and the multiplicative standard deviation s * in the form x * x /s*, that is advantageous and recommended. Conclusions/Significance: The corresponding shift from the symmetric to the asymmetric view will substantially increas
Proteins of Leishmania (Viannia) shawi confer protection associated with Th1 immune response and memory generation
<p>Abstract</p> <p>Background</p> <p><it>Leishmania (Viannia) shawi </it>parasite was first characterized in 1989. Recently the protective effects of soluble leishmanial antigen (SLA) from <it>L. (V.) shawi </it>promastigotes were demonstrated using BALB/c mice, the susceptibility model for this parasite. In order to identify protective fractions, SLA was fractionated by reverse phase HPLC and five antigenic fractions were obtained.</p> <p>Methods</p> <p>F1 fraction was purified from L. (V.) shawi parasite extract by reverse phase HPLC. BALB/c mice were immunized once a week for two consecutive weeks by subcutaneous routes in the rump, using 25 μg of F1. After 1 and 16 weeks of last immunization, groups were challenged in the footpad with L. (V.) shawi promastigotes. After 2 months, those same mice were sacrificed and parasite burden, cellular and humoral immune responses were evaluated.</p> <p>Results</p> <p>The F1 fraction induced a high degree of protection associated with an increase in IFN-γ, a decrease in IL-4, increased cell proliferation and activation of CD8<sup>+</sup>T lymphocytes. Long-term protection was acquired in F1-immunized mice, associated with increased CD4<sup>+ </sup>central memory T lymphocytes and activation of both CD4<sup>+ </sup>and CD8<sup>+ </sup>T cells. In addition, F1-immunized groups showed an increase in IgG2a levels.</p> <p>Conclusions</p> <p>The inductor capability of antigens to generate memory lymphocytes that can proliferate and secrete beneficial cytokines upon infection could be an important factor in the development of vaccine candidates against American Tegumentary Leishmaniasis.</p
Effect of exercise therapy on lipid profile and oxidative stress indicators in patients with type 2 diabetes
<p>Abstract</p> <p>Background</p> <p>Yoga has been shown to be a simple and economical therapeutic modality that may be considered as a beneficial adjuvant for type 2 diabetes mellitus. This study investigated the impact of Hatha yoga and conventional physical training (PT) exercise regimens on biochemical, oxidative stress indicators and oxidant status in patients with type 2 diabetes.</p> <p>Methods</p> <p>This prospective randomized study consisted of 77 type 2 diabetic patients in the Hatha yoga exercise group that were matched with a similar number of type 2 diabetic patients in the conventional PT exercise and control groups. Biochemical parameters such as fasting blood glucose (FBG), serum total cholesterol (TC), triglycerides, low-density lipoprotein (LDL), very low-density lipoproteins (VLDL) and high-density lipoprotein (HDL) were determined at baseline and at two consecutive three monthly intervals. The oxidative stress indicators (malondialdehyde – MDA, protein oxidation – POX, phospholipase A2 – PLA2 activity) and oxidative status [superoxide dismutase (SOD) and catalase activities] were measured.</p> <p>Results</p> <p>The concentrations of FBG in the Hatha yoga and conventional PT exercise groups after six months decreased by 29.48% and 27.43% respectively (P < 0.0001) and there was a significant reduction in serum TC in both groups (P < 0.0001). The concentrations of VLDL in the managed groups after six months differed significantly from baseline values (P = 0.036). Lipid peroxidation as indicated by MDA significantly decreased by 19.9% and 18.1% in the Hatha yoga and conventional PT exercise groups respectively (P < 0.0001); whilst the activity of SOD significantly increased by 24.08% and 20.18% respectively (P = 0.031). There was no significant difference in the baseline and 6 months activities of PLA2 and catalase after six months although the latter increased by 13.68% and 13.19% in the Hatha yoga and conventional PT exercise groups respectively (P = 0.144).</p> <p>Conclusion</p> <p>The study demonstrate the efficacy of Hatha yoga exercise on fasting blood glucose, lipid profile, oxidative stress markers and antioxidant status in patients with type 2 diabetes and suggest that Hatha yoga exercise and conventional PT exercise may have therapeutic preventative and protective effects on diabetes mellitus by decreasing oxidative stress and improving antioxidant status.</p> <p>Trial Registration</p> <p>Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12608000217303</p
Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors
Glioblastoma multiforme (GBM) remains refractory to conventional therapy. CD133+ GBM cells have been recently isolated and characterized as chemo-/radio-resistant tumor-initiating cells and are hypothesized to be responsible for post-treatment recurrence. In order to explore the molecular properties of tumorigenic CD133+ GBM cells that resist treatment, we isolated CD133+ GBM cells from tumors that are recurrent and have previously received chemo-/radio-therapy. We found that the purified CD133+ GBM cells sorted from the CD133+ GBM spheres express SOX2 and CD44 and are capable of clonal self-renewal and dividing to produce fast-growing CD133− progeny, which form the major cell population within GBM spheres. Intracranial injection of purified CD133+, not CD133− GBM daughter cells, can lead to the development of YKL-40+ infiltrating tumors that display hypervascularity and pseudopalisading necrosis-like features in mouse brain. The molecular profile of purified CD133+ GBM cells revealed characteristics of neuroectoderm-like cells, expressing both radial glial and neural crest cell developmental genes, and portraying a slow-growing, non-differentiated, polarized/migratory, astrogliogenic, and chondrogenic phenotype. These data suggest that at least a subset of treated and recurrent GBM tumors may be seeded by CD133+ GBM cells with neural and mesenchymal properties. The data also imply that CD133+ GBM cells may be clinically indolent/quiescent prior to undergoing proliferative cell division (PCD) to produce CD133− GBM effector progeny. Identifying intrinsic and extrinsic cues, which promote CD133+ GBM cell self-renewal and PCD to support ongoing tumor regeneration may highlight novel therapeutic strategies to greatly diminish the recurrence rate of GBM
- …
