497 research outputs found
TERT promoter mutation and aberrant hypermethylation are associated with elevated expression in medulloblastoma and characterise the majority of non-infant SHH subgroup tumours.
Quantum systems in weak gravitational fields
Fully covariant wave equations predict the existence of a class of
inertial-gravitational effects that can be tested experimentally. In these
equations inertia and gravity appear as external classical fields, but, by
conforming to general relativity, provide very valuable information on how
Einstein's views carry through in the world of the quantum.Comment: 22 pages. To be published in Proceedings of the 17th Course of the
International School of Cosmology and Gravitation "Advances in the interplay
between quantum and gravity physics" edited by V. De Sabbata and A.
Zheltukhin, Kluwer Academic Publishers, Dordrech
Quantum physics in inertial and gravitational fields
Covariant generalizations of well-known wave equations predict the existence
of inertial-gravitational effects for a variety of quantum systems that range
from Bose-Einstein condensates to particles in accelerators. Additional effects
arise in models that incorporate Born reciprocity principle and the notion of a
maximal acceleration. Some specific examples are discussed in detail.Comment: 25 pages,1 figure,to appear in "Relativity in Rotating Frame
Aptamers for respiratory syncytial virus detection.
The identification of the infectious agents is pivotal for appropriate care of patients with viral diseases. Current viral diagnostics rely on selective detection of viral nucleic acid or protein components. In general, detection of proteins rather than nucleic acids is technically more suitable for rapid tests. However, protein-based virus identification methods depend on antibodies limiting the practical applicability of these approaches. Aptamers rival antibodies in target selectivity and binding affinity, and excel in terms of robustness and cost of synthesis. Although aptamers have been generated for virus identification in laboratory settings, their introduction into routine virus diagnostics has not been realized, yet. Here, we demonstrate that the rationally designed SELEX protocol can be applied on whole virus to select aptamers, which can potentially be applied for viral diagnostics. This approach does not require purified virus protein or complicated virus purification. The presented data also illustrate that corroborating the functionality of aptamers with various approaches is essential to pinpoint the most appropriate aptamer amongst the panel of candidates obtained by the selection. Our protocol yielded aptamers capable of detecting respiratory syncytial virus (RSV), an important pathogen causing severe disease especially in young infants, at clinically relevant concentrations in complex matrices
Characterization of a putative NsrR homologue in Streptomyces venezuelae reveals a new member of the Rrf2 superfamily
Members of the Rrf2 superfamily of transcription factors are widespread in bacteria but their functions are largely unexplored. The few that have been characterized in detail sense nitric oxide (NsrR), iron limitation (RirA), cysteine availability (CymR) and the iron sulfur (Fe-S) cluster status of the cell (IscR). In this study we combined ChIP-seq with in vitro biochemistry to characterize a putative NsrR homologue in the model organism Streptomyces venezuelae. ChIP seq analysis revealed that rather than regulating the nitrosative stress response like NsrR, Sven6563 binds to a different, much larger regulon of genes with a diverse range of functions, including a range of regulators, genes required for glutamine synthesis, NADH/NAD(P)H metabolism, as well as general DNA/RNA and amino acid/protein turn over. Our biochemical experiments further show that Sven6563 has a [2Fe-2S] cluster and that the switch between oxidized and reduced cluster controls its DNA binding activity in vitro. To our knowledge, both the sensing domain and the target gene regulon are novel for an Rrf2 protein, suggesting Sven6563 represents a new member of the Rrf2 superfamily. Given the redox sensitivity of its Fe-S cluster we have tentatively named the protein RsrR for Redox sensitive response Regulator
Sustained Action of Developmental Ethanol Exposure on the Cortisol Response to Stress in Zebrafish Larvae and Adults
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThis study was supported by the National Centre for the replacement, refinement and reduction of animals in research
Ecological commonalities among pelagic fishes: comparison of freshwater ciscoes and marine herring and sprat
Systematic comparisons of the ecology between functionally similar fish species from freshwater and marine aquatic systems are surprisingly rare. Here, we discuss commonalities and differences in evolutionary history, population genetics, reproduction and life history, ecological interactions, behavioural ecology and physiological ecology of temperate and Arctic freshwater coregonids (vendace and ciscoes, Coregonus spp.) and marine clupeids (herring, Clupea harengus, and sprat, Sprattus sprattus). We further elucidate potential effects of climate warming on these groups of fish based on the ecological features of coregonids and clupeids documented in the previous parts of the review. These freshwater and marine fishes share a surprisingly high number of similarities. Both groups are relatively short-lived, pelagic planktivorous fishes. The genetic differentiation of local populations is weak and seems to be in part correlated to an astonishing variability of spawning times. The discrete thermal window of each species influences habitat use, diel vertical migrations and supposedly also life history variations. Complex life cycles and preference for cool or cold water make all species vulnerable to the effects of global warming. It is suggested that future research on the functional interdependence between spawning time, life history characteristics, thermal windows and genetic differentiation may profit from a systematic comparison of the patterns found in either coregonids or clupeids
Emerging role of the calcium-activated, small conductance, SK3 K <sup>+</sup> channel in distal tubule function: Regulation by TRPV4
The Ca2+-activated, maxi-K (BK) K+ channel, with low Ca2+-binding affinity, is expressed in the distal tubule of the nephron and contributes to flow-dependent K+ secretion. In the present study we demonstrate that the Ca2+-activated, SK3 (KCa2.3) K + channel, with high Ca2+-binding affinity, is also expressed in the mouse kidney (RT-PCR, immunoblots). Immunohistochemical evaluations using tubule specific markers demonstrate significant expression of SK3 in the distal tubule and the entire collecting duct system, including the connecting tubule (CNT) and cortical collecting duct (CCD). In CNT and CCD, main sites for K+ secretion, the highest levels of expression were along the apical (luminal) cell membranes, including for both principal cells (PCs) and intercalated cells (ICs), posturing the channel for Ca2+- dependent K+ secretion. Fluorescent assessment of cell membrane potential in native, split-opened CCD, demonstrated that selective activation of the Ca2+-permeable TRPV4 channel, thereby inducing Ca2+ influx and elevating intracellular Ca2+ levels, activated both the SK3 channel and the BK channel leading to hyperpolarization of the cell membrane. The hyperpolarization response was decreased to a similar extent by either inhibition of SK3 channel with the selective SK antagonist, apamin, or by inhibition of the BK channel with the selective antagonist, iberiotoxin (IbTX). Addition of both inhibitors produced a further depolarization, indicating cooperative effects of the two channels on Vm. It is concluded that SK3 is functionally expressed in the distal nephron and collecting ducts where induction of TRPV4-mediated Ca2+ influx, leading to elevated intracellular Ca2+ levels, activates this high Ca2+- affinity K+ channel. Further, with sites of expression localized to the apical cell membrane, especially in the CNT and CCD, SK3 is poised to be a key pathway for Ca2+-dependent regulation of membrane potential and K+ secretion. © 2014 Berrout et al
Stage-specific fluorescence intensity of GFP and mCherry during sporulation In Bacillus Subtilis
<p>Abstract</p> <p>Background</p> <p>Fluorescent proteins are powerful molecular biology tools that have been used to study the subcellular dynamics of proteins within live cells for well over a decade. Two fluorescent proteins commonly used to enable dual protein labelling are GFP (green) and mCherry (red). Sporulation in the Gram positive bacterium <it>Bacillus subtilis </it>has been studied for many years as a paradigm for understanding the molecular basis for differential gene expression. As sporulation initiates, cells undergo an asymmetric division leading to differential gene expression in the small prespore and large mother cell compartments. Use of two fluorescent protein reporters permits time resolved examination of differential gene expression either in the same compartments or between compartments. Due to the spectral properties of GFP and mCherry, they are considered an ideal combination for co-localisation and co-expression experiments. They can also be used in combination with fluorescent DNA stains such as DAPI to correlate protein localisation patterns with the developmental stage of sporulation which can be linked to well characterised changes in DNA staining patterns.</p> <p>Findings</p> <p>While observing the recruitment of the transcription machinery into the forespore of sporulating <it>Bacillus subtilis</it>, we noticed the occurrence of stage-specific fluorescence intensity differences between GFP and mCherry. During vegetative growth and the initial stages of sporulation, fluorescence from both GFP and mCherry fusions behaved similarly. During stage II-III of sporulation we found that mCherry fluorescence was considerably diminished, whilst GFP signals remained clearly visible. This fluorescence pattern reversed during the final stage of sporulation with strong mCherry and low GFP fluorescence. These trends were observed in reciprocal tagging experiments indicating a direct effect of sporulation on fluorescent protein fluorophores.</p> <p>Conclusions</p> <p>Great care should be taken when interpreting the results of protein localisation and quantitative gene expression patterns using fluorescent proteins in experiments involving intracellular physiological change. We believe changes in the subcellular environment of the sporulating cell leads to conditions that differently alter the spectral properties of GFP and mCherry making an accurate interpretation of expression profiles technically challenging.</p
A stone that feels right in the hand:Tactile memory, the abduction of agency and presence of the past
- …
