17 research outputs found

    Structures of intermediates during RES complex assembly

    Get PDF
    The action of the spliceosome depends on the stepwise cooperative assembly and disassembly of its components. Very strong cooperativity was observed for the RES (Retention and Splicing) hetero-trimeric complex where the affinity from binary to tertiary interactions changes more than 100-fold and affects RNA binding. The RES complex is involved in splicing regulation and retention of not properly spliced pre-mRNA with its three components-Snu17p, Pml1p and Bud13p-giving rise to the two possible intermediate dimeric complexes Pml1p-Snu17p and Bud13p-Snu17p. Here we determined the three-dimensional structure and dynamics of the Pml1p-Snu17p and Bud13p-Snu17p dimers using liquid state NMR. We demonstrate that localized as well as global changes occur along the RES trimer assembly pathway. The stepwise rigidification of the Snu17p structure following the binding of Pml1p and Bud13p provides a basis for the strong cooperative nature of RES complex assembly

    Cooperative structure of the heterotrimeric pre-mRNA retention and splicing complex

    No full text
    The precursor mRNA (pre-mRNA) retention and splicing (RES) complex is a spliceosomal complex that is present in yeast and humans and is important for RNA splicing and retention of unspliced pre-mRNA. Here, we present the solution NMR structure of the RES core complex from Saccharomyces cerevisiae. Complex formation leads to an intricate folding of three components-Snu17p, Bud13p and Pml1p-that stabilizes the RNA-recognition motif (RRM) fold of Snu17p and increases binding affinity in tertiary interactions between the components by more than 100-fold compared to that in binary interactions. RES interacts with pre-mRNA within the spliceosome, and through the assembly of the RES core complex RNA binding efficiency is increased. The three-dimensional structure of the RES core complex highlights the importance of cooperative folding and binding in the functional organization of the spliceosome

    The genetic overlap between mood disorders and cardiometabolic diseases: a systematic review of genome wide and candidate gene studies

    No full text

    Metal‐Induced Lung Disease: Lessons from Japan's Experience

    No full text

    Functional consequences of developmentally regulated alternative splicing

    No full text
    corecore