3,119 research outputs found

    Key nodes of a microRNA network associated with the integrated mesenchymal subtype of high-grade serous ovarian cancer

    Get PDF
    Metastasis is the main cause of cancer mortality. One of the initiating events of cancer metastasis of epithelial tumors is epithelial-to-mesenchymal transition (EMT), during which cells dedifferentiate from a relatively rigid cell structure/morphology to a flexible and changeable structure/morphology often associated with mesenchymal cells. The presence of EMT in human epithelial tumors is reflected by the increased expression of genes and levels of proteins that are preferentially present in mesenchymal cells. The combined presence of these genes forms the basis of mesenchymal gene signatures, which are the foundation for classifying a mesenchymal subtype of tumors. Indeed, tumor classification schemes that use clustering analysis of large genomic characterizations, like The Cancer Genome Atlas (TCGA), have defined mesenchymal subtype in a number of cancer types, such as high-grade serous ovarian cancer and glioblastoma. However, recent analyses have shown that gene expression-based classifications of mesenchymal subtypes often do not associate with poor survival. This “paradox” can be ameliorated using integrated analysis that combines multiple data types. We recently found that integrating mRNA and microRNA (miRNA) data revealed an integrated mesenchymal subtype that is consistently associated with poor survival in multiple cohorts of patients with serous ovarian cancer. This network consists of 8 major miRNAs and 214 mRNAs. Among the 8 miRNAs, 4 are known to be regulators of EMT. This review provides a summary of these 8 miRNAs, which were associated with the integrated mesenchymal subtype of serous ovarian cancer

    Achiral phenolic N-oxides as additives: an alternative strategy for asymmetric cyanosilylation of ketones

    Get PDF
    The activation of chiral titanium(IV) complexes with additives, phenolic N-oxides, is found to provide an alternative strategy for asymmetric cyanosilylation of ketones in excellent yield With LIP to 82%, ee. (C) 2004 Elsevier Ltd. All rights reserved

    A Single-Arm, Proof-Of-Concept Trial of Lopimune (Lopinavir/Ritonavir) as a Treatment for HPV-Related Pre-Invasive Cervical Disease

    Get PDF
    BACKGROUND: Cervical cancer is the most common female malignancy in the developing nations and the third most common cancer in women globally. An effective, inexpensive and self-applied topical treatment would be an ideal solution for treatment of screen-detected, pre-invasive cervical disease in low resource settings. METHODS: Between 01/03/2013 and 01/08/2013, women attending Kenyatta National Hospital's Family Planning and Gynaecology Outpatients clinics were tested for HIV, HPV (Cervista®) and liquid based cervical cytology (LBC -ThinPrep®). HIV negative women diagnosed as high-risk HPV positive with high grade squamous intraepithelial lesions (HSIL) were examined by colposcopy and given a 2 week course of 1 capsule of Lopimune (CIPLA) twice daily, to be self-applied as a vaginal pessary. Colposcopy, HPV testing and LBC were repeated at 4 and 12 weeks post-start of treatment with a final punch biopsy at 3 months for histology. Primary outcome measures were acceptability of treatment with efficacy as a secondary consideration. RESULTS: A total of 23 women with HSIL were treated with Lopimune during which time no adverse reactions were reported. A maximum concentration of 10 ng/ml of lopinavir was detected in patient plasma 1 week after starting treatment. HPV was no longer detected in 12/23 (52.2%, 95%CI: 30.6-73.2%). Post-treatment cytology at 12 weeks on women with HSIL, showed 14/22 (63.6%, 95%CI: 40.6-82.8%) had no dysplasia and 4/22 (18.2%, 95%CI: 9.9-65.1%) were now low grade demonstrating a combined positive response in 81.8% of women of which 77.8% was confirmed by histology. These data are supported by colposcopic images, which show regression of cervical lesions. CONCLUSIONS: These results demonstrate the potential of Lopimune as a self-applied therapy for HPV infection and related cervical lesions. Since there were no serious adverse events or detectable post-treatment morbidity, this study indicates that further trials are clearly justified to define optimal regimes and the overall benefit of this therapy. TRIAL REGISTRATION: ISRCTN Registry 48776874

    Histone Acetylation-Mediated Regulation of the Hippo Pathway

    Get PDF
    The Hippo pathway is a signaling cascade recently found to play a key role in tumorigenesis therefore understanding the mechanisms that regulate it should open new opportunities for cancer treatment. Available data indicate that this pathway is controlled by signals from cell-cell junctions however the potential role of nuclear regulation has not yet been described. Here we set out to verify this possibility and define putative mechanism(s) by which it might occur. By using a luciferase reporter of the Hippo pathway, we measured the effects of different nuclear targeting drugs and found that chromatin-modifying agents, and to a lesser extent certain DNA damaging drugs, strongly induced activity of the reporter. This effect was not mediated by upstream core components (i.e. Mst, Lats) of the Hippo pathway, but through enhanced levels of the Hippo transducer TAZ. Investigation of the underlying mechanism led to the finding that cancer cell exposure to histone deacetylase inhibitors induced secretion of growth factors and cytokines, which in turn activate Akt and inhibit the GSK3 beta associated protein degradation complex in drug-affected as well as in their neighboring cells. Consequently, expression of EMT genes, cell migration and resistance to therapy were induced. These processes were suppressed by using pyrvinium, a recently described small molecule activator of the GSK 3 beta associated degradation complex. Overall, these findings shed light on a previously unrecognized phenomenon by which certain anti-cancer agents may paradoxically promote tumor progression by facilitating stabilization of the Hippo transducer TAZ and inducing cancer cell migration and resistance to therapy. Pharmacological targeting of the GSK3 beta associated degradation complex may thus represent a unique approach to treat cancer. © 2013 Basu et al

    Exclusive ρ0\rho^0 electroproduction on the proton at CLAS

    Full text link
    The epepρ0e p\to e^\prime p \rho^0 reaction has been measured, using the 5.754 GeV electron beam of Jefferson Lab and the CLAS detector. This represents the largest ever set of data for this reaction in the valence region. Integrated and differential cross sections are presented. The WW, Q2Q^2 and tt dependences of the cross section are compared to theoretical calculations based on tt-channel meson-exchange Regge theory on the one hand and on quark handbag diagrams related to Generalized Parton Distributions (GPDs) on the other hand. The Regge approach can describe at the \approx 30% level most of the features of the present data while the two GPD calculations that are presented in this article which succesfully reproduce the high energy data strongly underestimate the present data. The question is then raised whether this discrepancy originates from an incomplete or inexact way of modelling the GPDs or the associated hard scattering amplitude or whether the GPD formalism is simply inapplicable in this region due to higher-twists contributions, incalculable at present.Comment: 29 pages, 29 figure

    Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals

    Get PDF
    The recent identification of the mitochondrial Ca(2+) uniporter gene (Mcu/Ccdc109a) has enabled us to address its role, and that of mitochondrial Ca(2+) uptake, in neuronal excitotoxicity. Here we show that exogenously expressed Mcu is mitochondrially localized and increases mitochondrial Ca(2+) levels following NMDA receptor activation, leading to increased mitochondrial membrane depolarization and excitotoxic cell death. Knockdown of endogenous Mcu expression reduces NMDA-induced increases in mitochondrial Ca(2+), resulting in lower levels of mitochondrial depolarization and resistance to excitotoxicity. Mcu is subject to dynamic regulation as part of an activity-dependent adaptive mechanism that limits mitochondrial Ca(2+) overload when cytoplasmic Ca(2+) levels are high. Specifically, synaptic activity transcriptionally represses Mcu, via a mechanism involving the nuclear Ca(2+) and CaM kinase-mediated induction of Npas4, resulting in the inhibition of NMDA receptor-induced mitochondrial Ca(2+) uptake and preventing excitotoxic death. This establishes Mcu and the pathways regulating its expression as important determinants of excitotoxicity, which may represent therapeutic targets for excitotoxic disorders

    Interventions for treating depression after stroke

    Get PDF
    Background: Depression is an important consequence of stroke that impacts on recovery yet is often not detected or inadequately treated. This is an update of a Cochrane review first published in 2004. Objectives: To determine whether pharmaceutical, psychological, or electroconvulsive treatment (ECT) of depression in patients with stroke can improve outcome. Search strategy: We searched the trials registers of the Cochrane Stroke Group (last searched October 2007) and the Cochrane Depression Anxiety and Neurosis Group (last searched February 2008). In addition, we searched the Cochrane Central Register of Controlled Trials (The Cochrane Library, Issue 1, 2008), MEDLINE (1966 to May 2006), EMBASE (1980 to May 2006), CINAHL (1982 to May 2006), PsycINFO (1967 to May 2006) and other databases. We also searched reference lists, clinical trials registers, conference proceedings and dissertation abstracts, and contacted authors, researchers and pharmaceutical companies. Selection criteria: Randomised controlled trials comparing pharmaceutical agents with placebo, or various forms of psychotherapy or ECT with standard care (or attention control), in patients with stroke, with the intention of treating depression. Data collection and analysis: Two review authors selected trials for inclusion and assessed methodological quality; three review authors extracted, cross-checked and entered data. Primary analyses were the prevalence of diagnosable depressive disorder at the end of treatment. Secondary outcomes included depression scores on standard scales, physical function, death, recurrent stroke and adverse effects. Main results: Sixteen trials (17 interventions), with 1655 participants, were included in the review. Data were available for 13 pharmaceutical agents, and four trials of psychotherapy. There were no trials of ECT. The analyses were complicated by the lack of standardised diagnostic and outcome criteria, and differing analytic methods. There was some evidence of benefit of pharmacotherapy in terms of a complete remission of depression and a reduction (improvement) in scores on depression rating scales, but there was also evidence of an associated increase in adverse events. There was no evidence of benefit of psychotherapy. Authors' conclusions: A small but significant effect of pharmacotherapy (not psychotherapy) on treating depression and reducing depressive symptoms was found, as was a significant increase in adverse events. More research is required before recommendations can be made about the routine use of such treatments

    Photodisintegration of 4^4He into p+t

    Full text link
    The two-body photodisintegration of 4^4He into a proton and a triton has been studied using the CEBAF Large-Acceptance Spectrometer (CLAS) at Jefferson Laboratory. Real photons produced with the Hall-B bremsstrahlung-tagging system in the energy range from 0.35 to 1.55 GeV were incident on a liquid 4^4He target. This is the first measurement of the photodisintegration of 4^4He above 0.4 GeV. The differential cross sections for the γ\gamma4^4Hept\to pt reaction have been measured as a function of photon-beam energy and proton-scattering angle, and are compared with the latest model calculations by J.-M. Laget. At 0.6-1.2 GeV, our data are in good agreement only with the calculations that include three-body mechanisms, thus confirming their importance. These results reinforce the conclusion of our previous study of the three-body breakup of 3^3He that demonstrated the great importance of three-body mechanisms in the energy region 0.5-0.8 GeV .Comment: 13 pages submitted in one tgz file containing 2 tex file and 22 postscrip figure

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore