50 research outputs found
High-mass X-ray binaries and OB-runaway stars
High-mass X-ray binaries (HMXBs) represent an important phase in the
evolution of massive binary systems. HMXBs provide unique diagnostics to test
massive-star evolution, to probe the physics of radiation-driven winds, to
study the process of mass accretion, and to measure fundamental parameters of
compact objects. As a consequence of the supernova explosion that produced the
neutron star (or black hole) in these systems, HMXBs have high space velocities
and thus are runaways. Alternatively, OB-runaway stars can be ejected from a
cluster through dynamical interactions. Observations obtained with the
Hipparcos satellite indicate that both scenarios are at work. Only for a
minority of the OB runaways (and HMXBs) a wind bow shock has been detected.
This might be explained by the varying local conditions of the interstellar
medium.Comment: 15 pages, latex (sty file included) with 5 embedded figures (one in
jpg format), to appear in Proc. "Influence of binaries on stellar population
studies", Eds. Vanbeveren, Van Rensberge
Combustion in thermonuclear supernova explosions
Type Ia supernovae are associated with thermonuclear explosions of white
dwarf stars. Combustion processes convert material in nuclear reactions and
release the energy required to explode the stars. At the same time, they
produce the radioactive species that power radiation and give rise to the
formation of the observables. Therefore, the physical mechanism of the
combustion processes, as reviewed here, is the key to understand these
astrophysical events. Theory establishes two distinct modes of propagation for
combustion fronts: subsonic deflagrations and supersonic detonations. Both are
assumed to play an important role in thermonuclear supernovae. The physical
nature and theoretical models of deflagrations and detonations are discussed
together with numerical implementations. A particular challenge arises due to
the wide range of spatial scales involved in these phenomena. Neither the
combustion waves nor their interaction with fluid flow and instabilities can be
directly resolved in simulations. Substantial modeling effort is required to
consistently capture such effects and the corresponding techniques are
discussed in detail. They form the basis of modern multidimensional
hydrodynamical simulations of thermonuclear supernova explosions. The problem
of deflagration-to-detonation transitions in thermonuclear supernova explosions
is briefly mentioned.Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A.
Alsabti and P. Murdin, Springer. 24 pages, 4 figure
Explosive Nucleosynthesis: What we learned and what we still do not understand
This review touches on historical aspects, going back to the early days of
nuclear astrophysics, initiated by BFH and Cameron, discusses (i) the
required nuclear input from reaction rates and decay properties up to the
nuclear equation of state, continues (ii) with the tools to perform
nucleosynthesis calculations and (iii) early parametrized nucleosynthesis
studies, before (iv) reliable stellar models became available for the late
stages of stellar evolution. It passes then through (v) explosive environments
from core-collapse supernovae to explosive events in binary systems (including
type Ia supernovae and compact binary mergers), and finally (vi) discusses the
role of all these nucleosynthesis production sites in the evolution of
galaxies. The focus is put on the comparison of early ideas and present, very
recent, understanding.Comment: 11 pages, to appear in Springer Proceedings in Physics (Proc. of
Intl. Conf. "Nuclei in the Cosmos XV", LNGS Assergi, Italy, June 2018
Accreting Black Holes
This chapter provides a general overview of the theory and observations of
black holes in the Universe and on their interpretation. We briefly review the
black hole classes, accretion disk models, spectral state classification, the
AGN classification, and the leading techniques for measuring black hole spins.
We also introduce quasi-periodic oscillations, the shadow of black holes, and
the observations and the theoretical models of jets.Comment: 41 pages, 18 figures. To appear in "Tutorial Guide to X-ray and
Gamma-ray Astronomy: Data Reduction and Analysis" (Ed. C. Bambi, Springer
Singapore, 2020). v3: fixed some typos and updated some parts. arXiv admin
note: substantial text overlap with arXiv:1711.1025
Type Ia Supernovae as Stellar Endpoints and Cosmological Tools
Empirically, Type Ia supernovae are the most useful, precise, and mature
tools for determining astronomical distances. Acting as calibrated candles they
revealed the presence of dark energy and are being used to measure its
properties. However, the nature of the SN Ia explosion, and the progenitors
involved, have remained elusive, even after seven decades of research. But now
new large surveys are bringing about a paradigm shift --- we can finally
compare samples of hundreds of supernovae to isolate critical variables. As a
result of this, and advances in modeling, breakthroughs in understanding all
aspects of SNe Ia are finally starting to happen.Comment: Invited review for Nature Communications. Final published version.
Shortened, update
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
The microwave background temperature at the redshift of 2.33771
The Cosmic Microwave Background radiation is a fundamental prediction of Hot
Big Bang cosmology. The temperature of its black-body spectrum has been
measured at the present time, = 2.726 0.010 K, and is
predicted to have been higher in the past. At earlier time, the temperature can
be measured, in principle, using the excitation of atomic fine structure levels
by the radiation field. All previous measurements however give only upper
limits as they assume that no other significant source of excitation is
present. Here we report the detection of absorption from the first {\sl and}
second fine-structure levels of neutral carbon atoms in an isolated remote
cloud at a redshift of 2.33771. In addition, the unusual detection of molecular
hydrogen in several rotational levels and the presence of ionized carbon in its
excited fine structure level make the absorption system unique to constrain,
directly from observation, the different excitation processes at play. It is
shown for the first time that the cosmic radiation was warmer in the past. We
find 6.0 < T_{\rm CMBR} < 14 K at z = 2.33771 when 9.1 K is expected in the Hot
Big Bang cosmology.Comment: 20 pages, 5 figures, accepted for publication in Nature, Press
embargo until 1900 hrs London time (GMT) on 20 Dec 200
