11 research outputs found
MICA/B expression is inhibited by unfolded protein response and associated with poor prognosis in human hepatocellular carcinoma
BackgroundMICA/B are major ligands for NK cell activating receptor NKG2D and previous studies showed that the serum level of soluble MICA (sMICA) is an independent prognostic factor for advanced human hepatocellular carcinoma. However, the correlation between cellular MICA/B expression pattern and human hepatocellular carcinoma progression has not been well explored. The unfolded protein response is one of the main causes of resistance to chemotherapy and radiotherapy in tumor cells. However, whether the UPR in HCC could regulate the expression levels of MICA/B and affect the sensitivity of HCC cells to NK cell cytolysis has not been established yet.MethodsMICA/B expression pattern was evaluated by immunohistochemistry and Kaplan-Meier survival analysis was done to explore the relationship between MICA/B expression level and patient survival. The protein and mRNA expression levels of MICA/B in SMMC7721 and HepG2 cells treated by tunicamycin were evaluated by flow cytometry, Western Blot and RT-PCR. The cytotoxicity analysis was performed with the CytoTox 96 Non-Radioactive LDH Cytotoxicity Assay.ResultsMICA/B was highly expressed in human hepatocellular carcinoma and the expression level was significantly and negatively associated with tumor-node metastasis (TNM) stages. Patients with low level of MICA/B expression showed a trend of shorter survival time. The unfolded protein response (UPR) downregulated the expression of MICA/B. This decreased protein expression occurred via post-transcriptional regulation and was associated with proteasomal degradation. Moreover, decreased expression level of MICA/B led to the attenuated sensitivity of human HCC to NK cell cytotoxicity.ConclusionThese new findings of the connection of MICA/B, UPR and NK cells may represent a new concrete theory of NK cell regulation in HCC, and suggest that targeting this novel NK cell-associated immune evasion pathway may be meaningful in treating patients with HCC.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-014-0076-7) contains supplementary material, which is available to authorized users
SHQ1 is an ER stress response gene that facilitates chemotherapeutics-induced apoptosis via sensitizing ER-stress response
Novel prosurvival function of Yip1A in human cervical cancer cells: constitutive activation of the IRE1 and PERK pathways of the unfolded protein response
Modulation of the unfolded protein response impedes tumor cell adaptation to proteotoxic stress: a PERK for hepatocellular carcinoma therapy
Fine Tuning of the UPR by the Ubiquitin Ligases Siah1/2
The endoplasmic reticulum (ER) responds to changes in intracellular homeostasis through activation of the unfolded protein response (UPR). Yet, it is not known how UPR-signaling coordinates adaptation versus cell death. Previous studies suggested that signaling through PERK/ATF4 is required for cell death. We show that high levels of ER stress (i.e., ischemia-like conditions) induce transcription of the ubiquitin ligases Siah1/2 through the UPR transducers PERK/ATF4 and IRE1/sXBP1. In turn, Siah1/2 attenuates proline hydroxylation of ATF4, resulting in its stabilization, thereby augmenting ER stress output. Conversely, ATF4 activation is reduced upon Siah1/2 KD in cultured cells, which attenuates ER stress-induced cell death. Notably, Siah1a(+/-)::Siah2(-/-) mice subjected to neuronal ischemia exhibited smaller infarct volume and were protected from ischemia-induced death, compared with the wild type (WT) mice. In all, Siah1/2 constitutes an obligatory fine-tuning mechanism that predisposes cells to death under severe ER stress conditions
Driving Cancer Tumorigenesis and Metastasis Through UPR Signaling
International audienceIn the tumor microenvironment, cancer cells encounter both external and internal factors that can lead to the accumulation of improperly folded proteins in the Endoplasmic Reticulum (ER) lumen, thus causing ER stress. When this happens, an adaptive mechanism named the Unfolded Protein Response (UPR) is triggered to help the cell cope with this change and restore protein homeostasis in the ER. Sequentially, one would expect that the activation of the three UPR branches, driven namely by IRE1, PERK, and ATF6, are crucial for the adaptation of cancer cells to the changing environment and thus for their survival and further propagation. Indeed, in the last few years, an increasing amount of studies has shown the implication of UPR signaling in different aspects of carcinogenesis and tumor progression. Features such as sustaining proliferation and resistance to cell death, genomic instability, altered metabolism, increased inflammation and tumor-immune infiltration, invasion and metastasis, and angiogenesis, defined as "the hallmarks of cancer", can be regulated by the UPR machinery. At the same time, new potential therapeutic interventions applicable to different kinds of cancers are being revealed. In order to describe the emerging role of UPR in cancer biology, these are the points that will be discussed in this chapter
Induction of the Unfolded Protein Response Drives Enhanced Metabolism and Chemoresistance in Glioma Cells
The unfolded protein response (UPR) is an endoplasmic reticulum (ER)-based cytoprotective mechanism acting to prevent pathologies accompanying protein aggregation. It is frequently active in tumors, but relatively unstudied in gliomas. We hypothesized that UPR stress effects on glioma cells might protect tumors from additional exogenous stress (ie, chemotherapeutics), postulating that protection was concurrent with altered tumor cell metabolism. Using human brain tumor cell lines, xenograft tumors, human samples and gene expression databases, we determined molecular features of glioma cell UPR induction/activation, and here report a detailed analysis of UPR transcriptional/translational/metabolic responses. Immunohistochemistry, Western and Northern blots identified elevated levels of UPR transcription factors and downstream ER chaperone targets in gliomas. Microarray profiling revealed distinct regulation of stress responses between xenograft tumors and parent cell lines, with gene ontology and network analyses linking gene expression to cell survival and metabolic processes. Human glioma samples were examined for levels of the ER chaperone GRP94 by immunohistochemistry and for other UPR components by Western blotting. Gene and protein expression data from patient gliomas correlated poor patient prognoses with increased expression of ER chaperones, UPR target genes, and metabolic enzymes (glycolysis and lipogenesis). NMR-based metabolomic studies revealed increased metabolic outputs in glucose uptake with elevated glycolytic activity as well as increased phospholipid turnover. Elevated levels of amino acids, antioxidants, and cholesterol were also evident upon UPR stress; in particular, recurrent tumors had overall higher lipid outputs and elevated specific UPR arms. Clonogenicity studies following temozolomide treatment of stressed or unstressed cells demonstrated UPR-induced chemoresistance. Our data characterize the UPR in glioma cells and human tumors, and link the UPR to chemoresistance possibly via enhanced metabolism. Given the role of the UPR in the balance between cell survival and apoptosis, targeting the UPR and/or controlling metabolic activity may prove beneficial for malignant glioma therapeutics
