399 research outputs found
Lipid rafts control P2X3 receptor distribution and function in trigeminal sensory neurons of a transgenic migraine mouse model
Mechanisms of disease, diagnostics and therap
Functional crosstalk in culture between macrophages and trigeminal sensory neurons of a mouse genetic model of migraine
Background: Enhanced activity of trigeminal ganglion neurons is thought to underlie neuronal sensitization facilitating the onset of chronic pain attacks, including migraine. Recurrent headache attacks might establish a chronic neuroinflammatory ganglion profile contributing to the hypersensitive phenotype. Since it is difficult to study this process in vivo, we investigated functional crosstalk between macrophages and sensory neurons in primary cultures from trigeminal sensory ganglia of wild-type (WT) or knock-in (KI) mice expressing the Cacna1a gene mutation (R192Q) found in familial hemiplegic migraine-type 1. After studying the number and morphology of resident macrophages in culture, the consequences of adding host macrophages on macrophage phagocytosis and membrane currents mediated by pain-transducing P2X3 receptors on sensory neurons were examined.Results: KI ganglion cultures constitutively contained a larger number of active macrophages, although no difference in P2X3 receptor expression was found. Co-culturing WT or KI ganglia with host macrophages (active as much as resident cells) strongly stimulated single cell phagocytosis. The same protocol had no effect on P2X3 receptor expression in WT or KI co-cultures, but it largely enhanced WT neuron currents that grew to the high amplitude constitutively seen for KI neurons. No further potentiation of KI neuronal currents was observed.Conclusions: Trigeminal ganglion cultures from a genetic mouse model of migraine showed basal macrophage activation together with enhanced neuronal currents mediated by P2X3 receptors. This phenotype could be replicated in WT cultures by adding host macrophages, indicating an important functional crosstalk between macrophages and sensory neurons. \ua9 2012 Franceschini et al.; licensee BioMed Central Ltd
Brain natriuretic peptide constitutively downregulates P2X3 receptors by controlling their phosphorylation state and membrane localization
Background: ATP-gated P2X3 receptors are important transducers of nociceptive stimuli and are almost exclusively expressed by sensory ganglion neurons. In mouse trigeminal ganglion (TG), P2X3 receptor function is unexpectedly enhanced by pharmacological block of natriuretic peptide receptor-A (NPR-A), outlining a potential inhibitory role of endogenous natriuretic peptides in nociception mediated by P2X3 receptors. Lack of change in P2X3 protein expression indicates a complex modulation whose mechanisms for downregulating P2X3 receptor function remain unclear. Results: To clarify this process in mouse TG cultures, we suppressed NPR-A signaling with either siRNA of the endogenous agonist BNP, or the NPR-A blocker anantin. Thus, we investigated changes in P2X3 receptor distribution in the lipid raft membrane compartment, their phosphorylation state, as well as their function with patch clamping. Delayed onset of P2X3 desensitization was one mechanism for the anantin-induced enhancement of P2X3 activity. Anantin application caused preferential P2X3 receptor redistribution to the lipid raft compartment and decreased P2X3 serine phosphorylation, two phenomena that were not interdependent. An inhibitor of cGMP-dependent protein kinase and siRNA-mediated knockdown of BNP mimicked the effect of anantin. Conclusions: We demonstrated that in mouse trigeminal neurons endogenous BNP acts on NPR-A receptors to determine constitutive depression of P2X3 receptor function. Tonic inhibition of P2X3 receptor activity by BNP/NPR-A/PKG pathways occurs via two distinct mechanisms: P2X3 serine phosphorylation and receptor redistribution to non-raft membrane compartments. This novel mechanism of receptor control might be a target for future studies aiming at decreasing dysregulated P2X3 receptor activity in chronic pain. \ua9 2015 Marchenkova et al
In situ imaging reveals properties of purinergic signalling in trigeminal sensory ganglia in vitro
Functional Genomics of Muscle, Nerve and Brain Disorder
Search for neutral charmless B decays at LEP
A search for rare charmless decays of \Bd and \Bs mesons has been performed in the exclusive channels \Bd_{(\mathrm s)}\ra\eta\eta, \Bd_{(\mathrm s)}\ra\eta\pio and \Bd_{(\mathrm s)}\ra\pio\pio. The data sample consisted of three million hadronic \Zo decays collected by the L3 experiment at LEP from 1991 through 1994. No candidate event has been observed and the following upper limits at 90\% confidence level on the branching ratios have been set \begin{displaymath} \mathrm{Br}(\Bd\ra\eta\eta)<4.1\times 10^{-4},\,\, \mathrm{Br}(\Bs\ra\eta\eta)<1.5\times 10^{-3},\,\, \end{displaymath} \begin{displaymath} \mathrm{Br}(\Bd\ra\eta\pio)<2.5\times 10^{-4},\,\, \mathrm{Br}(\Bs\ra\eta\pio)<1.0\times 10^{-3},\,\, \end{displaymath} \begin{displaymath} \mathrm{Br}(\Bd\ra\pio\pio)<6.0\times 10^{-5},\,\, \mathrm{Br}(\Bs\ra\pio\pio)<2.1\times 10^{-4}. \end{displaymath} These are the first experimental limits on \Bd\ra\eta\eta and on the \Bs neutral charmless modes
Agreeing to disagree:Deaf and hearing children's awareness of subject–verb number agreement
This study investigated deaf adolescents' implicit and explicit awareness of subject–verb number agreement. In Experiment 1, a self-paced reading task, the reading times of deaf and hearing children (matched for reading and chronological age, mean = 8;3 and 13;10 years) increased when sentences contained disagreeing subject–verb number markers. However, deaf adolescents' slowing occurred later in the sentence than it did in both groups of hearing children. The same deaf adolescents were unable to detect and correct subject–verb agreement errors in Experiment 2, whereas both groups of hearing children performed well on this task. Thus, deaf adolescents demonstrated implicit awareness of agreement in the absence of explicit knowledge. Moreover, this nascent awareness was below that expected on the basis of their (substantially delayed) reading ability. Therefore, grammatical difficulties could be a significant impediment to deaf children's literacy. Future research should examine whether this is a result of late or incomplete learning of English, bilingualism, or another factor
Current and prospective pharmacological targets in relation to antimigraine action
Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon
- …
