4,304 research outputs found
Pointing to the minimum scatter: the generalized scaling relations for galaxy clusters
We introduce a generalized scaling law, M_tot = 10^K A^a B^b, to look for the
minimum scatter in reconstructing the total mass of hydrodynamically simulated
X-ray galaxy clusters, given gas mass M_gas, luminosity L and temperature T. We
find a locus in the plane of the logarithmic slopes and of the scaling
relations where the scatter in mass is minimized. This locus corresponds to b_M
= -3/2 a_M +3/2 and b_L = -2 a_L +3/2 for A=M_gas and L, respectively, and B=T.
Along these axes, all the known scaling relations can be identified (at
different levels of scatter), plus a new one defined as M_tot ~ (LT)^(1/2).
Simple formula to evaluate the expected evolution with redshift in the
self-similar scenario are provided. In this scenario, no evolution of the
scaling relations is predicted for the cases (b_M=0, a_M=1) and (b_L=7/2,
a_L=-1), respectively. Once the single quantities are normalized to the average
values of the sample under considerations, the normalizations K corresponding
to the region with minimum scatter are very close to zero. The combination of
these relations allows to reduce the number of free parameters of the fitting
function that relates X-ray observables to the total mass and includes the
self-similar redshift evolution.Comment: 6 pages, 3 figures. MNRAS in pres
Electron identification performance with ALICE TRD prototypes
We present the electron/pion identification performance measured with
prototypes for ALICE TRD. Measured spectra of energy deposit of pions and
electrons as well as their average values are presented and compared to
calculations. Various radiators are investigated over the momentum range of 1
to 6 GeV/c. The time signature of TR is exploited in a bidimensional likelihood
mothod.Comment: Presented at the conference "TRDs for the 3rd millenium", Bari,
Italy, Sept. 4-7 2003. To appear in Nucl.Instrum.Meth. A. (4 pages, 6
figures
Upsilon Production In pp Collisions For Forward Rapidities At LHC
This is a continuation of recent studies of production at the
LHC in pp collisions. Our previous studies were for rapidity y=-1 to 1 for the
CMS detector, while the present study is for y=2.5 to 4.0 at the LHC.Comment: 5 pages, 2 figure
The relation between velocity dispersion and mass in simulated clusters of galaxies: dependence on the tracer and the baryonic physics
[Abridged] We present an analysis of the relation between the masses of
cluster- and group-sized halos, extracted from CDM cosmological N-body
and hydrodynamic simulations, and their velocity dispersions, at different
redshifts from to . The main aim of this analysis is to understand
how the implementation of baryonic physics in simulations affects such
relation, i.e. to what extent the use of the velocity dispersion as a proxy for
cluster mass determination is hampered by the imperfect knowledge of the
baryonic physics. In our analysis we use several sets of simulations with
different physics implemented. Velocity dispersions are determined using three
different tracers, DM particles, subhalos, and galaxies.
We confirm that DM particles trace a relation that is fully consistent with
the theoretical expectations based on the virial theorem and with previous
results presented in the literature. On the other hand, subhalos and galaxies
trace steeper relations, and with larger values of the normalization. Such
relations imply that galaxies and subhalos have a per cent velocity
bias relative to the DM particles, which can be either positive or negative,
depending on halo mass, redshift and physics implemented in the simulation.
We explain these differences as due to dynamical processes, namely dynamical
friction and tidal disruption, acting on substructures and galaxies, but not on
DM particles. These processes appear to be more or less effective, depending on
the halo masses and the importance of baryon cooling, and may create a
non-trivial dependence of the velocity bias and the \soneD--\Mtwo relation
on the tracer, the halo mass and its redshift.
These results are relevant in view of the application of velocity dispersion
as a proxy for cluster masses in ongoing and future large redshift surveys.Comment: 13 pages, 16 figures. Minor modifications to match the version in
press on MNRA
Herzbergova dvofaktorska teorija delovne motivacije na primeru zaposlenih v turizmu
Prispevek obravnava delovno motivacijo kontaktnega osebja v turizmu v Sloveniji. Motivacijo opredeljujemo na podlagi Herzbergove dvofaktorske teorije, ki temelji na dveh vrstah faktorjev delovne motivacije, in sicer na motivatorjih, ki zaposlene motivirajo, in higienikih, ki zaposlenih ne motivirajo, a so brez njih nezadovoljni. Rezultati izvedene empirične raziskave kažejo, da imajo motivatorji (npr. priznanje, odgovornost) zelo močan vpliv na delovno motivacijo, medtem ko higieniki (npr. višina plače) nanjo nimajo statistično značilnega vpliva. Izhajajoč iz izsledkov raziskave lahko vodstva turističnih podjetij posvetijo večjo pozornost oz. povečajo pomen motivatorjev, v smislu povečanja odgovornosti kontaktnega osebja, uvedbe priznanj, omogočanja usposabljanj in podajanja ustreznih informacij, saj so le-ti dejavniki ključnega pomena za motiviranost zaposlenih.The article focuses on work motivation of Slovenian front-line employees working in tourism. The motivation is analyzed using a Herzbergs Two Factor Theory of work motivation, which is based on two factor groups of work motivation growth factors that motivate, and hygiene factors that do not motivate, yet their absence causes work dissatisfaction. The empirical research results indicated that growth factors (e.g. recognition and responsibility) have a major impact on work motivation, while hygiene factors (e.g. salary) did not show statistically signicant impact. The ndings of the research could be useful for management in tourism industry, who should give more attention to growth factors or strengthen their meaning by increasing front-line employees responsibilities, recognition, enabling additional trainings and giving adequate information as these factor have a pivotal meaning for employees work motivation
Large-scale inhomogeneities of the intracluster medium: improving mass estimates using the observed azimuthal scatter
Using a set of hydrodynamical simulations of 62 galaxy clusters and groups we
study the ICM of inhomogeneities, focusing on the ones on the large scale that,
unlike clumps, are the most difficult to identify. To this purpose we introduce
the concept of residual clumpiness, C_R, that quantifies the large-scale
inhomogeneity of the ICM. After showing that this quantity can be robustly
defined for relaxed systems, we characterize how it varies with radius, mass
and dynamical state of the halo. Most importantly, we observe that it
introduces an overestimate in the determination of the density profile from the
X-ray emission, which translates into a systematic overestimate of 6 (12)% in
the measurement of M_gas at R_200 for our relaxed (perturbed) cluster sample.
At the same time, the increase of C_R with radius introduces also a ~2%
systematic underestimate in the measurement of the hydrostatic-equilibrium mass
(M_he), which adds to the previous one generating a systematic ~8.5%
overestimate in f_gas in our relaxed sample. Since the residual clumpiness of
the ICM is not directly observable, we study its correlation with the azimuthal
scatter in the X-ray surface brightness of the halo and in the y-parameter
profiles. We find that their correlation is highly significant (r_S = 0.6-0.7),
allowing to define the azimuthal scatter measured in the X-ray surface
brightness profile and in the y-parameter as robust proxies of C_R. After
providing a function that connects the two quantities, we obtain that
correcting the observed gas density profiles using the azimuthal scatter
eliminates the bias in the measurement of M_gas for relaxed objects, which
becomes (0+/-2)% up to 2R_200, and reduces it by a factor of 3 for perturbed
ones. This method allows also to eliminate the systematics on the measurements
of M_he and f_gas, although a significant halo to halo scatter remains.
(abridged)Comment: 18 pages, 17 figures, 3 tables. Submitted to MNRAS, revised after
referee's comment
Response of a BGO detector to photon and neutron sources: simulations and measurements
In this paper Monte Carlo simulations (FLUKA) and measurements of the response of a BGO detector are reported. %For the measurements different radioactive sources were used to irradiate the BGO crystal. For the measurements three low-energy photon emitters were used to irradiate the BGO from various distances and angles. The neutron response was measured with an Am--Be neutron source. Simulations of the experimental irradiations were carried out. Our study can also be considered as a benchmark for FLUKA in terms of its reliability to predict the detector response of a BGO scintillator
- …
