7,292 research outputs found
Clustering-Based Predictive Process Monitoring
Business process enactment is generally supported by information systems that
record data about process executions, which can be extracted as event logs.
Predictive process monitoring is concerned with exploiting such event logs to
predict how running (uncompleted) cases will unfold up to their completion. In
this paper, we propose a predictive process monitoring framework for estimating
the probability that a given predicate will be fulfilled upon completion of a
running case. The predicate can be, for example, a temporal logic constraint or
a time constraint, or any predicate that can be evaluated over a completed
trace. The framework takes into account both the sequence of events observed in
the current trace, as well as data attributes associated to these events. The
prediction problem is approached in two phases. First, prefixes of previous
traces are clustered according to control flow information. Secondly, a
classifier is built for each cluster using event data to discriminate between
fulfillments and violations. At runtime, a prediction is made on a running case
by mapping it to a cluster and applying the corresponding classifier. The
framework has been implemented in the ProM toolset and validated on a log
pertaining to the treatment of cancer patients in a large hospital
Incremental Predictive Process Monitoring: How to Deal with the Variability of Real Environments
A characteristic of existing predictive process monitoring techniques is to
first construct a predictive model based on past process executions, and then
use it to predict the future of new ongoing cases, without the possibility of
updating it with new cases when they complete their execution. This can make
predictive process monitoring too rigid to deal with the variability of
processes working in real environments that continuously evolve and/or exhibit
new variant behaviors over time. As a solution to this problem, we propose the
use of algorithms that allow the incremental construction of the predictive
model. These incremental learning algorithms update the model whenever new
cases become available so that the predictive model evolves over time to fit
the current circumstances. The algorithms have been implemented using different
case encoding strategies and evaluated on a number of real and synthetic
datasets. The results provide a first evidence of the potential of incremental
learning strategies for predicting process monitoring in real environments, and
of the impact of different case encoding strategies in this setting
Mucosa-Environment Interactions in the Pathogenesis of Rheumatoid Arthritis
Mucosal surfaces play a central role in the pathogenesis of rheumatoid arthritis (RA). Several risk factors, such as cigarette smoking, environmental pollution, and periodontitis interact with the host at the mucosal level, triggering immune system activation. Moreover, the alteration of microbiota homeostasis is gaining increased attention for its involvement in the disease pathogenesis, modulating the immune cell response at a local and subsequently at a systemic level. Currently, the onset of the clinical manifest arthritis is thought to be the last step of a series of pathogenic events lasting years. The positivity for anti-citrullinated protein antibodies (ACPAs) and rheumatoid factor (RF), in absence of symptoms, characterizes a preclinical phase of RA namely systemic autoimmune phase- which is at high risk for disease progression. Several immune abnormalities, such as local ACPA production, increased T cell polarization towards a pro-inflammatory phenotype, and innate immune cell activation can be documented in at-risk subjects. Many of these abnormalities are direct consequences of the interaction between the environment and the host, which takes place at the mucosal level. The purpose of this review is to describe the humoral and cellular immune abnormalities detected in subjects at risk of RA, highlighting their origin from the mucosa environment interaction
Cannabis; epidemiological, neurobiological and psychopathological issues: an update
This document is the Accepted Manuscript version of the following article: Maria Antonietta De Luca, Gaetano Di Chiara, Cristina Cadoni, Daniele Lecca, Laura Orsolini, Duccio Papanti, John Corkery, Fabrizio Schifano, 'Cannabis; Epidemiological, Neurobiological and Psychopathological Issues: An Update', CNS & Neurological Disorders - Drug Targets, Vol. 16, 2017. The published manuscript is available at EurekaSelect via https://doi.org/10.2174/1871527316666170413113246. Published by Bentham Science.Cannabis is the illicit drug with both the largest current levels of consumption and the highest reported lifetime prevalence levels in the world. Across different countries, the prevalence of cannabis use varies according to the individual income, with the highest use being reported in North America, Australia and Europe. Despite its ‘soft drug’ reputation, cannabis misuse may be associated with several acute and chronic adverse effects. The present article aims at reviewing several papers on epidemiological, neurobiological and psychopathological aspects of the use of cannabis. The PubMed database was here examined in order to collect and discuss a range of identified papers. Cannabis intake usually starts during late adolescence/early adulthood (15-24 years) and drastically decreases in adulthood with the acquisition of working, familiar and social responsibilities. Clinical evidence supports the current socio-epidemiological alarm concerning the increased consumption among youngsters and the risks related to the onset of psychotic disorders. The mechanism of action of cannabis presents some analogies with other abused drugs, e.g. opiates. Furthermore, it has been well demonstrated that cannabis intake in adolescence may facilitate the transition to the use and/or abuse of other psychotropic drugs, hence properly being considered a ‘gateway drug’. Some considerations on synthetic cannabimimetics are provided here as well. In conclusion, the highest prevalence of cannabis use and the social perception of a relatively low associated risk are in contrast with current knowledge based on biological and clinical evidence. Indeed, there are concerns relating to cannabis intake association with detrimental effects on both cognitive impairment and mental health.Peer reviewe
Laparoscopy in liver transplantation: The future has arrived
In the last two decades, laparoscopy has revolutionized the field of surgery. Many procedures previously performed with an open
access are now routinely carried out with the laparoscopic approach. Several advantages are associated with laparoscopic surgery
compared to open procedures: reduced pain due to smaller incisions and hemorrhaging, shorter hospital length of stay, and a lower
incidence of wound infections. Liver transplantation (LT) brought a radical change in life expectancy of patients with hepatic endstage
disease. Today, LT represents the standard of care for more than fifty hepatic pathologies, with excellent results in terms
of survival. Surely, with laparoscopy and LT being one of the most continuously evolving challenges in medicine, their recent
combination has represented an astonishing scientific progress. The intent of the present paper is to underline the current role of diagnostic and therapeutic laparoscopy in patients waiting for LT, in the living donor LT and in LT recipients
Recommended from our members
Ca2+-activated K+ channels modulate microglia affecting motor neuron survivalin hSOD1G93A mice
Recent studies described a critical role for microglia in amyotrophic lateral sclerosis (ALS), where these CNS-resident immune cells participate in the establishment of an inflammatory microenvironment that contributes to motor neuron degeneration. Understanding the mechanisms leading to microglia activation in ALS could help to identify specific molecular pathways which could be targeted to reduce or delay motor neuron degeneration and muscle paralysis in patients. The intermediate-conductance calcium-activated potassium channel KCa3.1 has been reported to modulate the "pro-inflammatory" phenotype of microglia in different pathological conditions. We here investigated the effects of blocking KCa3.1 activity in the hSOD1G93AALS mouse model, which recapitulates many features of the human disease. We report that treatment of hSOD1G93A mice with a selective KCa3.1 inhibitor, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), attenuates the "pro-inflammatory" phenotype of microglia in the spinal cord, reduces motor neuron death, delays onset of muscle weakness, and increases survival. Specifically, inhibition of KCa3.1 channels slowed muscle denervation, decreased the expression of the fetal acetylcholine receptor γ subunit and reduced neuromuscular junction damage. Taken together, these results demonstrate a key role for KCa3.1 in driving a pro-inflammatory microglia phenotype in ALS
Biofilm is a major virulence determinant in bacterial colonization of chronic skin ulcers independently from the multidrug resistant phenotype
Bacterial biofilm is a major factor in delayed wound healing and high levels of biofilm production have been repeatedly described in multidrug resistant organisms (MDROs). Nevertheless, a quantitative correlation between biofilm production and the profile of antimicrobial drug resistance in delayed wound healing remains to be determined. Microbial identification, antibiotic susceptibility and biofilm production were assessed in 135 clinical isolates from 87 patients. Gram-negative bacteria were the most represented microorganisms (60.8%) with MDROs accounting for 31.8% of the total isolates. Assessment of biofilm production revealed that 80% of the strains were able to form biofilm. A comparable level of biofilm production was found with both MDRO and not-MDRO with no significant differences between groups. All the methicillin-resistant Staphylococcus aureus (MRSA) and 80% of Pseudomonas aeruginosa MDR strains were found as moderate/high biofilm producers. Conversely, less than 17% of Klebsiella pneumoniae extended-spectrum beta-lactamase (ESBL), Escherichia coli-ESBL and Acinetobacter baumannii were moderate/high biofilm producers. Notably, those strains classified as non-biofilm producers, were always associated with biofilm producer bacteria in polymicrobial colonization. This study shows that biofilm producers were present in all chronic skin ulcers, suggesting that biofilm represents a key virulence determinant in promoting bacterial persistence and chronicity of ulcerative lesions independently from the MDRO phenotype
Campylobacter jejuni fatal sepsis in a patient with non-Hodgkin’s lymphoma: Case report and literature review of a difficult diagnosis
Campylobacter jejuni (C. jejuni) bacteremia is difficult to diagnose in individuals with hematological disorders undergoing chemotherapy. The cause can be attributed to the rarity of this infection, to the variable clinical presentation, and to the partial overlapping symptoms underlying the disease. Here, we report a case of a fatal sepsis caused by C. jejuni in a 76-year-old Caucasian man with non-Hodgkin's lymphoma. After chemotherapeutic treatment, the patient experienced fever associated with severe neutropenia and thrombocytopenia without hemodynamic instability, abdominal pain, and diarrhea. The slow growth of C. jejuni in the blood culture systems and the difficulty in identifying it with conventional biochemical phenotyping methods contributed to the delay of administering a targeted antimicrobial treatment, leading to a fatal outcome. Early recognition and timely intervention are critical for the successful management of C. jejuni infection. Symptoms may be difficult to recognize in immunocompromised patients undergoing chemotherapy. Thus, it is important to increase physician awareness regarding the clinical manifestations of C. jejuni to improve therapeutic efficacy. Moreover, the use of more aggressive empirical antimicrobial treatments with aminoglycosides and/or carbapenems should be considered in immunosuppressed patients, in comparison to those currently indicated in the guidelines for cancer-related infections supporting the use of cephalosporins as monotherapy
The Emerging Role of Microbial Biofilm in Lyme Neuroborreliosis
Lyme borreliosis (LB) is the most common tick-borne disease caused by the spirochete Borrelia burgdorferi in North America and Borrelia afzelii or Borrelia garinii in Europe and Asia, respectively. The infection affects multiple organ systems, including the skin, joints, and the nervous system. Lyme neuroborreliosis (LNB) is the most dangerous manifestation of Lyme disease, occurring in 10-15% of infected individuals. During the course of the infection, bacteria migrate through the host tissues altering the coagulation and fibrinolysis pathways and the immune response, reaching the central nervous system (CNS) within 2 weeks after the bite of an infected tick. The early treatment with oral antimicrobials is effective in the majority of patients with LNB. Nevertheless, persistent forms of LNB are relatively common, despite targeted antibiotic therapy. It has been observed that the antibiotic resistance and the reoccurrence of Lyme disease are associated with biofilm-like aggregates in B. burgdorferi, B. afzelii, and B. garinii, both in vitro and in vivo, allowing Borrelia spp. to resist to adverse environmental conditions. Indeed, the increased tolerance to antibiotics described in the persisting forms of Borrelia spp., is strongly reminiscent of biofilm growing bacteria, suggesting a possible role of biofilm aggregates in the development of the different manifestations of Lyme disease including LNB
Safety and comfort of domestic bortezomib injection in real-life experience
Despite novel agents, multiple myeloma is still an incurable disease, especially for elderly and frail patients, who are difficult to manage for concomitant comorbidities as the therapeutic options are limited and the response to chemotherapy is often short. We report our evaluations upon safety and efficacy of domestic subcutaneous bortezomib in elderly and frail patients candidate to bortezomib-melphalan-prednisone (VMP) regimen. We confirmed that overall incidence of adverse events, including peripheral neuropathy, was low, and in no case required admission to emergency service, contributing to reduce the rate of therapy discontinuation. These results confirm the effectiveness and safety of subcutaneous bortezomib, in a real-life-experience, and define a new possibility of safe auto-administration in a comfortable domestic setting. We suggest that domestic treatment can significantly improve the quality of life of the patients, avoiding unnecessary transfer to the hospital without reducing treatment efficacy
- …
