484 research outputs found
Material flow analysis of aluminium, copper, and iron in the EU-28
The EC Raw Materials System Analysis (MSA) was carried out in 2015 for 28 materials . The MSA study investigates the flows of materials through the EU economy in terms of entry into the EU, flows through the economy, stock accumulation, and end-of-life management, e.g., through disposal or recovery in the EU-28. The MSA study is a follow-up of the “Study on Data Needs for a Full Raw Materials Flow Analysis” , launched by the European Commission in 2012 within the context of the European Raw Materials Initiative’s (RMI) strategy. This strategy, which is a part of the Europe 2020’s strategy for smart, sustainable, and inclusive growth, aims at securing and improving access to raw materials for the EU.
The MSA is a key building block of the European Union Raw Materials Knowledge Base (EURMKB). MSAs are an important data provider for a variety of raw material policy knowledge needs, as also reflected in the Raw Materials Information System (RMIS). The RMIS aims to support the broad range of EU policy knowledge needs of, e.g., the EU Raw Materials (RM) Scoreboard, EU Critical Raw Materials (CRM) assessment, and EU trade negotiations. In addition, it also aims to support broader coordination beyond these needs of other EU level data and information on raw materials. For both of these EUKBRM/RMIS roles, MSA is a vital backbone. The MSA data sets contain key, material specific data and information that will support the development of a database for the RMIS. However, currently only 28 MSA studies exist (mostly for CRMs) which are quickly becoming outdated. So far, no MSA studies exist for some of the major metals (e.g., iron, copper, aluminium, zinc, or nickel) which are important to the EU economy, e.g., due to the large quantities in which find use as well as due to their use in special application, e.g., as alloying elements.
Against this background, this report presents, firstly, detailed MSA studies for aluminium (Al), copper (Cu), and iron (Fe) and discusses, secondly, possibilities for future MSA update and maintenance in the RMIS.
Overall, the results show that the EU-28 has a well-established industrial chain for all the three metals covering the major value chain steps (from extraction to end-of-life). However, modest natural deposits make the region strongly dependent on imports to meet the domestic demand of primary material . Only a small fraction of total primary metal input to processing in the EU-28 is supplied from domestic extraction ranging from 10% (Al) to 13% (Fe).
Demand-supply dynamics and product lifetime determine the accumulation of materials as in-use stocks and scrap generation at end-of-life. Iron, aluminium, and copper are used in large quantities (compared to other metals) and their major application segments have relatively long in-use lifetimes (e.g., 50-75 years for building and construction). In-use stock for the three metals in EU-28 were estimated at about 5,300 Tg for iron (or around 10 t per capita), 132 Tg for aluminium (around 260 kg per capita), 73 Tg for copper (around 140 kg per capita).
A consolidated recycling industry supplements primary supply of aluminium, copper and iron with inputs from secondary sources (i.e., new scrap and old scrap ). In particular, old scrap recycling performance attests respectable end-of-life recycling rates (EOL-RR) for the three metals (i.e., 69% aluminium, 61% copper, 75% iron), but they are still far from “perfect” recycling.
In addition, not all old scrap collected for recycling is processed in the EU-28, with the region being a net-exporter of secondary material. Material loss in products at end-of-life and net-exports of secondary material forms constraint the closure of material cycles and prevent the implementation of a circular economy in the EU-28 requiring the adoption of resource efficiency strategies priority.
Because of its system-wide perspective on raw materials issues (encompassing all life-cycle stages of a raw material), the MSA provides an overarching data structure that could be based inside the RMIS database (DB) core to collect, store, and provide data also for other policy knowledge needs (i.e., EU CRM assessment, Circular Economy Monitoring, Trade, Minventory, RM Scoreboard). Flows/stocks parameters of the MSA can also be important to satisfy knowledge needs that may arise as a result of future policy needs, e.g., through resilience, determining urban stocks, and other emerging issues. Equally, complete MSAs can help in the quality assurance of the underlying mass balance/data and increasing harmonization of the various data sources – which cannot be guaranteed if only a partial picture exists.
Results from an assessment of data overlaps between MSA and other policy-related outputs show that current policy knowledge needs often require data on various flows related to the early stages of a raw material’s life-cycle. For example, a total of 12 flows (out of 40 in total) of the MSA are also required for the 2017 CRM assessment. Data on secondary raw materials are essential for current circular economy monitoring, but generally difficult to obtain without MSAs.
Possibilities for MSA update and maintenance range from partial data updates (harvesting data synergies with current policy-related outputs, e.g., the CRM assessment, Scoreboard, and Trade module in RMIS) to carrying out full/systematic MSAs for most candidate materials of the CRM assessment (through European Commission (EC) internal research projects and outsourcing via external contracts).JRC.D.3-Land Resource
Environmental implications of future copper demand and supply in Europe
Copper is the third metal by production volume after iron and aluminium, but its wide use in modern technology can be affected by high vulnerability to supply restriction due to the anticipated mine production peak. Securing access to copper forms is of particular importance for countries highly depending on imports, notably many EU Member States. Recycling of postconsumer scrap can help to reduce Europe’s reliance on natural reserves and to reduce the environmental impacts associated with primary copper production, but end-of-life management of copper scrap is far from perfect recycling performance. In this work, we combined material flow analysis, scenario analysis and life cycle assessment to explore the possible evolution of copper demand in the EU-28 to 2050 and discussed the potentials for energy savings and climate mitigation achievable under the creation of a circular economy in the EU-28
Application of life cycle assessment to high quality-soil conditioner production from biowaste
The recent large-scale urbanization and industrialization resulted in an impressive growth of solid waste generation worldwide. Organic fraction generally constitutes a large fraction of municipal solid waste and its peculiar chemical properties open to various valorization strategies. On this purpose, life cycle assessment is applied to an innovative industrial system that processes 18 kt/y of agricultural and livestock waste into a high-quality soil conditioner. The high-quality soil conditioner production system consists of a series of processes, including anaerobic digestion and vermicomposting, allowing the generation of a peat-like material with high carbon content, porosity, and water-holding capacity. The presence of a photovoltaic plant and a cogeneration plant, fed with the biogas produced in the anaerobic digestion, makes the system entirely self-sufficient from the national grid and generating a surplus of electricity of 1177MWh/y. The high-quality soil conditioner showed better environmental performances in 15 out of 18 impact categories when compared to alternative scenarios. In particular, the high-quality soil conditioner and the related biowaste management resulted in a carbon saving of around 397 kg CO2 eq/ton compared with a scenario involving the employment of peat in place of the high-quality soil conditioner and a traditional biowaste management, and 165 kg CO2 eq/ton compared with a scenario where cogeneration is replaced by biomethane upgrading. This study demonstrates the possibility of using organic waste as an environmentally sustainable and renewable source for energy and carbon to soil conditioning
Still edible wasted food from households: A regional Italian case study
A 2-year monitoring campaign was carried out within the Marche Region (Italy) to quantify the potential still edible wasted food (seFW) within the sorted (seFWsorted) and unsorted (seFWunsorted) waste streams. Results were elaborated to estimate the distribution of seFW among the five provinces and the amount per capita. Results in terms of total quantities per inhabitants (seFWindex per capita) depict an important variability between districts but almost constant in years (26–38 kg/inhabitants in 2018 and 26–36 kg/inhabitants in 2019). Scores in Marche were then used to study the national situation, adopting the same percentage factors. Analysis was performed on 2019 data. Gradual colour shade was used to identify the Regions with greater seFW production potential. Worst scores are achieved by Lazio, Lombardia and Sicilia (red), followed by others classified as orange and yellow. More than 1.5 Mt potential seFW was estimated at national level, 29% of which is due to the unsorted fraction. Results at national level were used to assess the potential environmental impact related to seFW in terms of climate change. Carbon footprint indicator was quantified per capita (69 kg equivalent carbon dioxide (CO2e)/inhabitant/year in the case of Marche) and overall (3.5 MtCO2e). In addition, an evaluation of the potential economic implications related to the greenhouse gases emitted was made using the Social Cost of Carbon. Results showed that cost of the tCO2e global damage related to seFW in Italy ranges from 35 to 700 M$
Improving the waste management system in an Italian footwear district applying MFA and LCA
The fashion industry presents a significant social role, employing millions of people, but it also contributes to resource depletion, ecosystem stress, and climate change. Consequently, sustainability within this sector has garnered increased attention. As part of the fashion sector, the footwear industry is also facing this challenge. With over 23.9 billion shoes produced annually, waste management in this sector presents significant environmental hurdles. In this case study, material flow analysis and life cycle assessment methodologies were adopted to identify and quantify waste flows, their dynamics, and the potential environmental impacts related to one of the main fashion footwear districts in Italy. The results identify opportunities for improving the recovery and recycling processes, especially concerning leather, a key component of shoes contributing to over 30 % of various environmental categories. It was also highlighted that the footwear industry's path to sustainability includes legislative progress, improvements in waste management, and collaboration among stakeholders
Environmental impacts of food packaging: Is it all a matter of raw materials?
The packaging sector and the environmental impacts stemming from its various materials and applications are currently at the forefront of scientific and political debate. To estimate the environmental impacts associated with raw materials and identify the role of industrial processes, this study presents a cradle-to-grave Life Cycle Assessment applied to two distinct packaging formulations for chocolate bars, namely oriented polypropylene-based and paper-based packaging. The product systems related to the two alternatives were compared by focusing on the contribution of each resource input and emission of the production phase, to identify respective environmental trade-offs and potentials for future improvements throughout the life cycle. Our study also proposes a laboratory-based approach to develop robust assumptions concerning the modeling of end-of-life material treatment and provide support to decision-making toward environmentally sustainable waste management practices. From the outcomes, a relative preference emerges for paper-based packaging, from a minimum of 10 to a maximum of 16 out of 18 environmental categories, depending on the evaluated scenario. The hotspot analysis highlighted a significant influence of the processing phases, with raw materials being generally characterized by lower percentage contributions to the final impact. In conclusion, the findings underscore the importance of considering the entire life cycle when assessing packaging sustainability. Moreover, the proposed laboratory approach offers valuable insights for policymakers and industry stakeholders to optimize end-of-life strategies and minimize the overall environmental footprint of packaging materials
The Environmental Stake of Bitcoin Mining: Present and Future Challenges
The environmental impact of Bitcoin mining has raised severe concerns considering the expected growth of 30% by 2030. This study aimed to develop a Life Cycle Assessment model to determine the carbon dioxide equivalent emissions associated with Bitcoin mining, considering material requirements and energy demand. By applying the impact assessment method IPCC 2021 GWP (100 years), the GHG emissions associated with electricity consumption were estimated at 51.7 Mt CO2 eq/year in 2022 and calculated by modelling real national mixes referring to the geographical area where mining takes place, allowing for the determination of the environmental impacts in a site-specific way. The estimated impacts were then adjusted to future energy projections (2030 and 2050), by modelling electricity mixes coherently with the spatial distribution of mining activities, the related national targeted goals, the increasing demand for electricity for hashrate and the capability of the systems to recover the heat generated in the mining phase. Further projections for 2030, based on two extrapolated energy consumption models, were also determined. The outcomes reveal that, in relation to the considered scenarios and their associated assumptions, breakeven points where the increase in energy consumption associated with mining nullifies the increase in the renewable energy share within the energy mix exist. The amount of amine-based sorbents hypothetically needed to capture the total CO2 equivalent emitted directly and indirectly for Bitcoin mining reaches up to almost 12 Bt. Further developments of the present work would rely on more reliable data related to future energy projections and the geographical distribution of miners, as well as an extension of the environmental categories analyzed. The Life Cycle Assessment methodology represents a valid tool to support policies and decision makers
Molecular catalysed Guerbet reaction: Moving to the larger and the Greener through LCA and scale up simulation approaches
Efficient homologation of bio-ethanol can be performed under mild conditions exploiting a catalytic system based of a ruthenium molecular catalyst, benzoquinone and a base as a co-catalysts. Conversions and selectivity can be tuned by changing the head space of the reactor. On this basis, preliminary design of a full-scale process has been developed based on the experimental results. The process has been characterized with specific energy and performance indicators per unit of produced butanol, which have been used as input for the life cycle assessment analysis. The LCA was applied as scientific methodology to address potential burdens of the baseline configuration, 3X catalytic cycles, electricity from Italian grid and heat from natural gas. Hotspots were identified according to a multi-impact approach method (ReCiPe 2016). The usage of dedicated lignocellulosic biomass as a source of EtOH, the synthesis of the catalytic system and the energy requirements were addressed as the major contributors. Thus, further sensitivity scenarios were created. The best configuration was identified in the use of waste biomasses and in an integrated cogeneration unit. In addition, enabling the recovery of the catalytic system up to five cycles to scenario shows a reduction in the impacts higher than 50% for the categories of global warming potential, −41% for the mineral resource scarcity and around −16% for the fine particulate matter formation. The results were also confirmed by an uncertainty analysis with the Monte Carlo method, which demonstrated the major environmental sustainability of the Guerbet route compared to the oxo synthesis from propylene
- …
