474 research outputs found

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Biogenesis and functions of bacterial S-layers.

    Get PDF
    The outer surface of many archaea and bacteria is coated with a proteinaceous surface layer (known as an S-layer), which is formed by the self-assembly of monomeric proteins into a regularly spaced, two-dimensional array. Bacteria possess dedicated pathways for the secretion and anchoring of the S-layer to the cell wall, and some Gram-positive species have large S-layer-associated gene families. S-layers have important roles in growth and survival, and their many functions include the maintenance of cell integrity, enzyme display and, in pathogens and commensals, interaction with the host and its immune system. In this Review, we discuss our current knowledge of S-layer and related proteins, including their structures, mechanisms of secretion and anchoring and their diverse functions

    A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease

    Get PDF
    A genome-wide survival analysis of 14,406 Alzheimer's disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and 14 novel loci associated with age at onset. Linkage disequilibrium score regression of 220 cell types implicated the regulation of myeloid gene expression in AD risk. The minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability was enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affected the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function

    Do sexist mothers change more diapers? Ambivalent sexism, maternal gatekeeping and the division of childcare

    Get PDF
    This study examined the role of ambivalent sexist ideologies in the division of childcare responsibilities. It proposed maternal gatekeeping as a mediator through which hostile sexist attitudes toward men and women facilitate gendered division of childcare. A sample of 207 mothers with at least one child aged 6 years or younger completed extensive questionnaires. As hypothesized, the mother’s hostile sexist attitudes toward men and women were positively related to maternal gatekeeping tendencies. Gatekeeping, in turn, was related to the mother’s greater time investment in childcare and greater share of childcare tasks relative to the father. Finally, hostile sexist attitudes toward men and women had an indirect effect on the mother’s hours of care and relative share of childcare tasks, mediated though maternal gatekeeping. The findings underscore the importance of investigating the mechanisms through which sexist ideologies are translated into daily behaviors that help maintain a gendered social structure. They may be utilized to inform parenting interventions aimed at increasing collaborative family work and fathers’ participation

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes

    Successional Change in Phosphorus Stoichiometry Explains the Inverse Relationship between Herbivory and Lupin Density on Mount St. Helens

    Get PDF
    The average nitrogen-to-phosphorus ratio (N?P) of insect herbivores is less than that of leaves, suggesting that P may mediate plant-insect interactions more often than appreciated. We investigated whether succession-related heterogeneity in N and P stoichiometry influences herbivore performance on N-fixing lupin (Lupinus lepidus) colonizing primary successional volcanic surfaces, where the abundances of several specialist lepidopteran herbivores are inversely related to lupin density and are known to alter lupin colonization dynamics. We examined larval performance in response to leaf nutritional characteristics using gelechiid and pyralid leaf-tiers, and a noctuid leaf-cutter.Apple JL, Wink M, Wills SE, Bishop JG (2009) Successional Change in Phosphorus Stoichiometry Explains the Inverse Relationship between Herbivory and Lupin Density on Mount St. Helens. PLoS ONE 4(11): e7807. doi:10.1371/journal.pone.000780
    corecore