2,037 research outputs found
A Multicentric European Clinical Study on Custom-Made Porous Hydroxyapatite Cranioplasty in a Pediatric Population
Background: Cranioplasty (CP) is a surgical intervention aiming to re-establish the integrity of skull defects. Autologous bone and different heterologous materials are used for this purpose, with various reported related complications, especially in children.This study aims to evaluate the rate of complication in a multicentric cohort of pediatric patients treated by porous hydroxyapatite (PHA) CP implantation and to assess the reliability of post-marketing clinical data collected by a manufacturing company. Methods: The authors proactively collected clinical data from 20 institutions in different European countries for patients under the age of 16 treated with a PHA implant. The data were obtained by conducting an on-site interview with physicians in charge of the patients (Post-Marketing Surveillance, PMS group). The endpoints were the incidence of adverse events and related implant removal. The clinical data were compared to the company-based register including all patients under the age of 16 who received the same implant from January 1, 2004 to December 31, 2020, and the collecting complications voluntarily reported by surgeons (Database, DB group). Results: The two groups were similar in terms of demographic characteristics and rate of complications. In the PMS group, a total of 11 (16.9%) complications were reported in the group of 65 patients that were proactively collected. Both fractures and infections were the most common complications with 4 cases each (6.2%). In the case of both infections and fractures, revision surgery was required for only one patient (1.5%). Three (4.5%) cases of displacements were reported, and in one (1.5%) case, a surgical revision was required, for a total of 3 (4.5%) cases requiring surgical revision. The average follow-up was 26.7 months. Conclusions: Different from a previous study on adult age, pediatric neurosurgeons are more prone to report even to the manufacturing company complications related to skull reconstruction in children. Therefore, these data can be compared with those of other clinical studies. The PHA CP in this series of 65 patients presents a complication rate collected on-site that is similar to other heterologous materials
Cholesterol-lowering action of a novel nutraceutical combination in uremic rats: Insights into the molecular mechanism in a hepatoma cell line
Appropriate nutraceutical combinations may represent a valid approach to prevent vascular calcification associated with chronic kidney disease (CKD). In the present study, we tested the effect of a new nutraceutical combination named RenaTris®, containing MK-7, magnesium carbonate, and Sucrosomial® Iron, on vascular calcification in uremic rats. Rats were randomly divided into three groups, i.e. control (high-phosphate diet), uremic (high-phosphate diet containing 0.5% adenine), and supplemented uremic diet (0.5% adenine, MK-7, magnesium carbonate, and Sucrosomial® Iron). After six weeks, sera and vascular calcification were examined. The uremic diet increased creatinine and phosphate levels and induced extensive vascular calcification. The uremic condition also induced a mild hypercholesterolemic condition (+52% of total cholesterol; p < 0.05). The supplemented uremic diet did not reduce creatinine, phosphate levels, or vascular calcification, however, we observed a significant hypocholesterolemic effect (−18.9% in supplemental uremic vs. uremic diet; p < 0.05). Similar to simvastatin, incubation of cultured human hepatoma cells (Huh7) with MK-7 significantly reduced cholesterol biosynthesis (−38%) and induced 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase and low-density lipoprotein receptor (LDLR) at both mRNA and protein levels. The effect of MK-7 on LDLR was counteracted by the co-incubation with squalene. Unlike simvastatin, MK-7 reduced PCSK9 in Huh7. These results indicated that the new nutraceutical combination significantly impacts cholesterol metabolism and its supplementation may help to control mild hypercholesterolemic conditions in CKD patients
Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose
O uno e o ser no pensamento de Meister Eckhart
O problema de fundo da especulação eckhartiana é a verdade do ser uno enquanto Deus e divino ligada à questão do seu conhecimento. Operando uma síntese da tradição neoplatônico-agostiniana e do pensamento do Pseudo-Dionísio Areopagita, o mestre dominicano funda os alicerces da sua teologia unitiva na teoria do ser
First polarisation measurement of coherently photoproduced J/ψ in ultra-peripheral Pb–Pb collisions at sNN=5.02 TeV
The first measurement of the polarisation of coherently photoproduced J/ψ mesons in ultra-peripheral Pb–Pb collisions, using data at sNN=5.02 TeV, is presented. The J/ψ meson is measured via its dimuon decay channel in the forward rapidity interval −4.0<−2.5 using the ALICE detector at the CERN LHC. An event sample corresponding to an integrated luminosity of 750 μb−1 ± 5% (syst) is analysed. Hadronic activity is highly suppressed since the interaction is mediated by a photon. The polar and azimuthal angle distributions of the decay muons are measured, and the polarisation parameters λθ, λφ, λθφ are extracted. The analysis is carried out in the helicity frame. The results are found to be consistent with a transversely polarised J/ψ. These values are compared with previous measurements by the H1 and ZEUS experiments. The polarisation parameters of coherent J/ψ photoproduction in Pb–Pb collisions are found to be consistent with the s-channel helicity conservation hypothesis
Probing Strangeness Hadronization with Event-by-Event Production of Multistrange Hadrons
This Letter presents the first measurement of event-by-event fluctuations of the net number (difference between the particle and antiparticle multiplicities) of multistrange hadrons Ξ- and Ξ ̄+ and its correlation with the net-kaon number using the data collected by the ALICE Collaboration in pp, p-Pb, and Pb-Pb collisions at a center-of-mass energy per nucleon pair sNN=5.02 TeV. The statistical hadronization model with a correlation over three units of rapidity between hadrons having the same and opposite strangeness content successfully describes the results. On the other hand, string-fragmentation models that mainly correlate strange hadrons with opposite strange quark content over a small rapidity range fail to describe the data
Multiplicity dependence of Υ production at forward rapidity in pp collisions at s=13 TeV
The measurement of Υ(1S), Υ(2S), and Υ(3S) yields as a function of the charged-particle multiplicity density, dNch/dη, using the ALICE experiment at the LHC, is reported in pp collisions at s= 13 TeV. The Υ meson yields are measured at forward rapidity (2.5<4) in the dimuon decay channel, whereas the charged-particle multiplicity is defined at central rapidity (|η|<1). Both quantities are divided by their average value in minimum bias events to compute the self-normalized quantities. The increase of the self-normalized Υ(1S), Υ(2S), and Υ(3S) yields is found to be compatible with a linear scaling with the self-normalized dNch/dη, within the uncertainties. The self-normalized yield ratios of excited-to-ground Υ states are compatible with unity within uncertainties. Similarly, the measured double ratio of the self-normalized Υ(1S) to the self-normalized J/ψ yields, both measured at forward rapidity, is compatible with unity for self-normalized charged-particle multiplicities beyond one. The measurements are compared with theoretical predictions incorporating initial or final state effects
Measurement of the production and elliptic flow of (anti)nuclei in Xe-Xe collisions at √sNN =5.44 TeV
Measurements of (anti)deuteron and (anti)He3 production in the rapidity range |y|<0.5 as a function of the transverse momentum and event multiplicity in Xe-Xe collisions at a center-of-mass energy per nucleon-nucleon pair of sNN=5.44 TeV are presented. The coalescence parameters B2 and B3 are measured as a function of the transverse momentum per nucleon. The ratios between (anti)deuteron and (anti)He3 yields and those of (anti)protons and pions are reported as a function of the mean charged-particle multiplicity density and compared with two implementations of the statistical hadronization model and with coalescence predictions. The elliptic flow of (anti)deuterons is measured for the first time in Xe-Xe collisions and shows features similar to those already observed in Pb-Pb collisions, i.e., the mass ordering at low transverse momentum and the meson-baryon grouping at intermediate transverse momentum. The production of nuclei is particularly sensitive to the chemical freeze-out temperature of the system created in the collision, which is extracted from a grand-canonical-ensemble-based thermal fit, performed for the first time including light nuclei along with light-flavor hadrons in Xe-Xe collisions. The extracted chemical freeze-out temperature Tchem=(154.2±1.1) MeV in Xe-Xe collisions is similar to that observed in Pb-Pb collisions and close to the crossover temperature predicted by lattice quantum chromodynamics calculations
Multimuons in cosmic-ray events as seen in ALICE at the LHC
ALICE is a large experiment at the CERN Large Hadron Collider. Located 52 meters underground, its detectors are suitable to measure muons produced by cosmic-ray interactions in the atmosphere. In this paper, the studies of the cosmic muons registered by ALICE during Run 2 (2015–2018) are described. The analysis is limited to multimuon events defined as events with more than four detected muons (Nμ > 4) and in the zenith angle range 0◦ 100) obtained with QGSJET-II-04 and SIBYLL 2.3d is compatible with the data, while EPOS-LHC produces a significantly lower rate (55% of the measured rate). For both QGSJET-II-04 and SIBYLL 2.3d, the rate is close to the data when the composition is assumed to be dominated by heavy elements, an outcome compatible with the average energy Eprim ∼ 1017 eV of these events. This result places significant constraints on more exotic production mechanisms
Exploring the Strong Interaction of Three-Body Systems at the LHC
Deuterons are atomic nuclei composed of a neutron and a proton held together by the strong interaction. Unbound ensembles composed of a deuteron and a third nucleon have been investigated in the past using scattering experiments, and they constitute a fundamental reference in nuclear physics to constrain nuclear interactions and the properties of nuclei. In this work, K+-d and p-d femtoscopic correlations measured by the ALICE Collaboration in proton-proton (pp) collisions at √s = 13 TeV at the Large Hadron Collider (LHC) are presented. It is demonstrated that correlations in momentum space between deuterons and kaons or protons allow us to study three-hadron systems at distances comparable with the proton radius. The analysis of the K+-d correlation shows that the relative distances at which deuterons and protons or kaons are produced are around 2 fm. The analysis of the p-d correlation shows that only a full three-body calculation that accounts for the internal structure of the deuteron can explain the data. In particular, the sensitivity of the observable to the short-range part of the interaction is demonstrated. These results indicate that correlations involving light nuclei in pp collisions at the LHC will also provide access to any three-body system in the strange and charm sectors
- …
