4,111 research outputs found

    Gas low pressure low flow rate metering system Patent

    Get PDF
    Flowmeters for sensing low fluid flow rate and pressure for application to respiration rate studie

    High- and low-pressure pneumotachometers measure respiration rates accurately in adverse environments

    Get PDF
    Respiration-rate transducers in the form of pneumotachometers measure respiration rates of pilots operating high performance research aircraft. In each low pressure or high pressure oxygen system a sensor is placed in series with the pilots oxygen supply line to detect gas flow accompanying respiration

    NMR imaging of the soliton lattice profile in the spin-Peierls compound CuGeO_3

    Full text link
    In the spin-Peierls compound CuGeO3_{3}, the commensurate-incommensurate transition concerning the modulation of atomic position and the local spin-polarization is fully monitored at T=0 by the application of an external magnetic field (HH) above a threshold value HcH_{c}\simeq 13 Tesla. The solitonic profile of the spin-polarization, as well as its absolute magnitude, has been precisely imaged from 65Cu^{65}Cu NMR lineshapes obtained for h=(HHc)/Hch=(H-H_{c})/H_{c} varying from 0.0015 to 2. This offers a unique possibility to test quantitatively the various numerical and analytical methods developed to solve a generic Hamiltonian in 1-D physics, namely strongly interacting fermions in presence of electron-phonon coupling at arbitrary band filling.Comment: 3 pages, 4 eps figures, RevTeX, submitted to Physical Review Lette

    Ab initio evaluation of the charge-ordering in αNaV2O5\alpha^\prime NaV_2O_5

    Full text link
    We report {\it ab initio} calculations of the charge ordering in αNaV2O5\alpha^\prime NaV_2O_5 using large configurations interaction methods on embedded fragments. Our major result is that the 2py2p_y electrons of the bridging oxygen of the rungs present a very strong magnetic character and should thus be explicitly considered in any relevant effective model. The most striking consequence of this result is that the spin and charge ordering differ substantially, as differ the experimental results depending on whether they are sensitive to the spin or charge density.Comment: 4 page

    Orthorhombic versus monoclinic symmetry of the charge-ordered state of NaV2O5

    Full text link
    High-resolution X-ray diffraction data show that the low-temperature superstructure of alpha-NaV2O5 has an F-centered orthorhombic 2a x 2b x 4c superlattice. A structure model is proposed, that is characterized by layers with zigzag charge order on all ladders and stacking disorder, such that the averaged structure has space group Fmm2. This model is in accordance with both X-ray scattering and NMR data. Variations in the stacking order and disorder offer an explanation for the recently observed devils staircase of the superlattice period along c.Comment: REVTEX, 4 pages including 2 figures, shortened, submitted to PR

    Mixing of magnetic and phononic excitations in incommensurate Spin-Peierls systems

    Full text link
    We analyze the excitation spectra of a spin-phonon coupled chain in the presence of a soliton. This is taken as a microscopic model of a Spin-Peierls material placed in a high magnetic field. We show, by using a semiclassical approximation in the bosonized representation of the spins that a trapped magnetic state obtained in the adiabatic approximation is destroyed by dynamical phonons. Low energy states are phonons trapped by the soliton. When the magnetic gap is smaller than the phonon frequencies the only low energy state is a mixed magneto-phonon state with the energy of the gap. We emphasize that our results are relevant for the Raman spectra of the inorganic Spin-Peierls material CuGeO3_3.Comment: 5 pages, latex, 2 figures embedded in the tex

    Charge Order Driven spin-Peierls Transition in NaV2O5

    Full text link
    We conclude from 23Na and 51V NMR measurements in NaxV2O5(x=0.996) a charge ordering transition starting at T=37 K and preceding the lattice distortion and the formation of a spin gap Delta=106 K at Tc=34.7 K. Above Tc, only a single Na site is observed in agreement with the Pmmn space group of this first 1/4-filled ladder system. Below Tc=34.7 K, this line evolves into eight distinct 23Na quadrupolar split lines, which evidences a lattice distortion with, at least, a doubling of the unit cell in the (a,b) plane. A model for this unique transition implying both charge density wave and spin-Peierls order is discussed.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Electronic Structure of Stripes in Two-Dimensional Hubbard Model

    Full text link
    Focusing on La_{2-x}Sr_{x}CuO_{4}, we study the stripe structure by the self-consistent mean-field theory of the Hubbard model. By introducing the realistic Fermi surface topology, the SDW-gapped insulator is changed to metallic. The solitonic features of the stripe structure and the contribution of the mid-gap states are presented. We consider the band dispersion, the local density of states, the spectral weight, and the optical conductivity, associated with the solitonic structure. These results may provide important information for the experimental research of the stripe structure, such as the angle-resolved photoemission experiments. The ``Fermi surface'' shape is changed depending on the ratio of the incommensurability delta and the hole density n_h. In real space, only the stripe region is metallic when delta/n_h is large.Comment: LaTeX 12 pages (using jpsj macros) with 16 figure

    High field magnetic resonant properties of beta'-(ET)2SF5CF2SO3

    Get PDF
    A systematic electron spin resonance (ESR) investigation of the low temperature regime for the (ET)2SF5CF2SO3 system was performed in the frequency range of ~200-700 GHz, using backward wave oscillator sources, and at fields up to 25 T. Newly acquired access to the high frequency and fields shows experimental ESR results in agreement with the nuclear magnetic resonance (NMR) investigation, revealing evidence that the transition seen at 20 K is not of conventional spin-Peierls order. A significant change of the spin resonance spectrum in beta'-(ET)2SF5CF2SO3 at low temperatures, indicates a transition into a three-dimensional-antiferromagnetic (3D AFM) phase.Comment: 4 pages, 7 figures, minor grammatical change

    Anomalous spectral weight in photoemission spectra of the hole doped Haldane chain Y2-xSrxBaNiO5

    Full text link
    In this paper, we present photoemission experiments on the hole doped Haldane chain compound Y2xSrxBaNiO5Y_{2-x}Sr_xBaNiO_5. By using the photon energy dependence of the photoemission cross section, we identified the symmetry of the first ionisation states (d type). Hole doping in this system leads to a significant increase in the spectral weight at the top of the valence band without any change in the vicinity of the Fermi energy. This behavior, not observed in other charge transfer oxides at low doping level, could result from the inhomogeneous character of the doped system and from a Ni 3d-O 2p hybridization enhancement due to the shortening of the relevant Ni-O distance in the localized hole-doped regions.Comment: 5 pages, 4 figure
    corecore