3,319 research outputs found
Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey
Publisher PD
A niching memetic algorithm for simultaneous clustering and feature selection
Clustering is inherently a difficult task, and is made even more difficult when the selection of relevant features is also an issue. In this paper we propose an approach for simultaneous clustering and feature selection using a niching memetic algorithm. Our approach (which we call NMA_CFS) makes feature selection an integral part of the global clustering search procedure and attempts to overcome the problem of identifying less promising locally optimal solutions in both clustering and feature selection, without making any a priori assumption about the number of clusters. Within the NMA_CFS procedure, a variable composite representation is devised to encode both feature selection and cluster centers with different numbers of clusters. Further, local search operations are introduced to refine feature selection and cluster centers encoded in the chromosomes. Finally, a niching method is integrated to preserve the population diversity and prevent premature convergence. In an experimental evaluation we demonstrate the effectiveness of the proposed approach and compare it with other related approaches, using both synthetic and real data
A fully-coherent all-sky search for gravitational-waves from compact binary coalescences
We introduce a fully-coherent method for searching for gravitational wave
signals generated by the merger of black hole and/or neutron star binaries.
This extends the coherent analysis previously developed and used for targeted
gravitational wave searches to an all-sky, all-time search. We apply the search
to one month of data taken during the fifth science run of the LIGO detectors.
We demonstrate an increase in sensitivity of 25% over the coincidence search,
which is commensurate with expectations. Finally, we discuss prospects for
implementing and running a coherent search for gravitational wave signals from
binary coalescence in the advanced gravitational wave detector data.Comment: 17 pages, 12 figure
Isolated, slowly evolving, and dynamical trapping horizons: geometry and mechanics from surface deformations
We study the geometry and dynamics of both isolated and dynamical trapping
horizons by considering the allowed variations of their foliating two-surfaces.
This provides a common framework that may be used to consider both their
possible evolutions and their deformations as well as derive the well-known
flux laws. Using this framework, we unify much of what is already known about
these objects as well as derive some new results. In particular we characterize
and study the "almost-isolated" trapping horizons known as slowly evolving
horizons. It is for these horizons that a dynamical first law holds and this is
analogous and closely related to the Hawking-Hartle formula for event horizons.Comment: 39 pages, 6 figures, version to appear in PRD : a few minor changes
and many typos corrected in equation
Parameter estimation on compact binary coalescences with abruptly terminating gravitational waveforms
Gravitational-wave astronomy seeks to extract information about astrophysical
systems from the gravitational-wave signals they emit. For coalescing
compact-binary sources this requires accurate model templates for the inspiral
and, potentially, the subsequent merger and ringdown. Models with
frequency-domain waveforms that terminate abruptly in the sensitive band of the
detector are often used for parameter-estimation studies. We show that the
abrupt waveform termination contains significant information that affects
parameter-estimation accuracy. If the sharp cutoff is not physically motivated,
this extra information can lead to misleadingly good accuracy claims. We also
show that using waveforms with a cutoff as templates to recover complete
signals can lead to biases in parameter estimates. We evaluate when the
information content in the cutoff is likely to be important in both cases. We
also point out that the standard Fisher matrix formalism, frequently employed
for approximately predicting parameter-estimation accuracy, cannot properly
incorporate an abrupt cutoff that is present in both signals and templates;
this observation explains some previously unexpected results found in the
literature. These effects emphasize the importance of using complete waveforms
with accurate merger and ringdown phases for parameter estimation.Comment: Very minor changes to match published versio
Improved source localization with LIGO India
A global network of advanced gravitational wave interferometric detectors is
under construction. These detectors will offer an order of magnitude
improvement in sensitivity over the initial detectors and will usher in the era
of gravitational wave astronomy. In this paper, we evaluate the benefits of
relocating one of the advanced LIGO detectors to India.Comment: 7 pages, 3 figures, accepted for publication in proceedings of
ICGC2011 conference. Localization figures update
Investigating the impact of combining handwritten signature and keyboard keystroke dynamics for gender prediction
© 2019 IEEE. The use of soft-biometric data as an auxiliary tool on user identification is already well known. Gender, handorientation and emotional state are some examples which can be called soft-biometrics. These soft-biometric data can be predicted directly from the biometric templates. It is very common to find researches using physiological modalities for soft-biometric prediction, but behavioural biometric is often not well explored for this context. Among the behavioural biometric modalities, keystroke dynamics and handwriting signature have been widely explored for user identification, including some soft-biometric predictions. However, in these modalities, the soft-biometric prediction is usually done in an individual way. In order to fill this space, this study aims to investigate whether the combination of those two biometric modalities can impact the performance of a soft-biometric data, gender prediction. The main aim is to assess the impact of combining data from two different biometric sources in gender prediction. Our findings indicated gains in terms of performance for gender prediction when combining these two biometric modalities, when compared to the individual ones
Network layer security: Design for a cross layer architecture
Traditional modular layering schemes have served a major part in the development of a variety of protocols. However, as the physical layer impairments become more unpredictable, a cross layer design (CLD) which is dynamic in nature provides better performance. CLD introduces new challenges in protocol design as well as in the area of security. Using numerical analysis, we show that a link layer design employing header compression and cross layer signalling to protect protocol headers can limit packet discarding. This paper also reviews the IPsec protocol and describes how IPsec can be modified for cross layer architecture. © 2007 IEEE
Robust spatially resolved pressure measurements using MRI with novel buoyant advection-free preparations of stable microbubbles in polysaccharide gels
MRI of fluids containing lipid coated microbubbles has been shown to be an effective tool for measuring the local fluid pressure. However, the intrinsically buoyant nature of these microbubbles precludes lengthy measurements due to their vertical migration under gravity and pressure-induced coalescence. A novel preparation is presented which is shown to minimize both these effects for at least 25 min. By using a 2% polysaccharide gel base with a small concentration of glycerol and 1,2-distearoyl-sn-glycero-3-phosphocholine coated gas microbubbles, MR measurements are made for pressures between 0.95 and 1.44 bar. The signal drifts due to migration and amalgamation are shown to be minimized for such an experiment whilst yielding very high NMR sensitivities up to 38% signal change per bar
Horizon energy and angular momentum from a Hamiltonian perspective
Classical black holes and event horizons are highly non-local objects,
defined in terms of the causal past of future null infinity. Alternative,
(quasi)local definitions are often used in mathematical, quantum, and numerical
relativity. These include apparent, trapping, isolated, and dynamical horizons,
all of which are closely associated to two-surfaces of zero outward null
expansion. In this paper we show that three-surfaces which can be foliated with
such two-surfaces are suitable boundaries in both a quasilocal action and a
phase space formulation of general relativity. The resulting formalism provides
expressions for the quasilocal energy and angular momentum associated with the
horizon. The values of the energy and angular momentum are in agreement with
those derived from the isolated and dynamical horizon frameworks.Comment: 39 pages, 3 figures, Final Version : content essentially unchanged
but many small improvements made in response to referees, a few references
adde
- …
