921 research outputs found

    NASTRAN analysis of an air storage piping system

    Get PDF
    The application of NASTRAN to a complex piping design evaluation problem is summarized. Emphasis is placed on structural modeling aspects, problems encountered in modeling and analyzing curved pipe sections, principal results, and relative merits of using NASTRAN as a pipe analysis and design tool. In addition, the piping and manifolding system was analyzed with SNAP (Structural Network Analysis Program). The parallel SNAP study provides a basis for limited comparisons between NASTRAN and SNAP as to solution agreement and computer execution time and costs

    Spatial Variations in Galactic H I Structure on AU-Scales Toward 3C 147 Observed with the Very Long Baseline Array

    Full text link
    This paper reports dual-epoch, Very Long Baseline Array observations of H I absorption toward 3C 147. One of these epochs (2005) represents new observations while one (1998) represents the reprocessing of previous observations to obtain higher signal-to-noise results. Significant H I opacity and column density variations, both spatially and temporally, are observed with typical variations at the level of \Delta\tau ~ 0.20 and in some cases as large as \Delta\tau ~ 0.70, corresponding to column density fluctuations of order 5 x 10^{19} cm^{-2} for an assumed 50 K spin temperature. The typical angular scale is 15 mas; while the distance to the absorbing gas is highly uncertain, the equivalent linear scale is likely to be about 10 AU. Approximately 10% of the face of the source is covered by these opacity variations, probably implying a volume filling factor for the small-scale absorbing gas of no more than about 1%. Comparing our results with earlier results toward 3C 138 (Brogan et al.), we find numerous similarities, and we conclude that small-scale absorbing gas is a ubiquitous phenomenon, albeit with a low probability of intercept on any given line of sight. Further, we compare the volumes sampled by the line of sight through the Galaxy between our two epochs and conclude that, on the basis of the motion of the Sun alone, these two volumes are likely to be substantially different. In order to place more significant constraints on the various models for the origin of these small-scale structures, more frequent sampling is required in any future observations.Comment: 16 pages with 10 figures in 24 files; AASTeX format; accepted by A

    Tiny scale opacity fluctuations from VLBA, MERLIN and VLA observations of HI absorption toward 3C 138

    Full text link
    The structure function of opacity fluctuations is a useful statistical tool to study tiny scale structures of neutral hydrogen. Here we present high resolution observation of HI absorption towards 3C 138, and estimate the structure function of opacity fluctuations from the combined VLA, MERLIN and VLBA data. The angular scales probed in this work are ~ 10-200 milliarcsec (about 5-100 AU). The structure function in this range is found to be well represented by a power law S_tau(x) ~ x^{beta} with index beta ~ 0.33 +/- 0.07 corresponding to a power spectrum P_tau(U) ~ U^{-2.33}. This is slightly shallower than the earlier reported power law index of ~ 2.5-3.0 at ~ 1000 AU to few pc scales. The amplitude of the derived structure function is a factor of ~ 20-60 times higher than the extrapolated amplitude from observation of Cas A at larger scales. On the other hand, extrapolating the AU scale structure function for 3C 138 predicts the observed structure function for Cas A at the pc scale correctly. These results clearly establish that the atomic gas has significantly more structures in AU scales than expected from earlier pc scale observations. Some plausible reasons are identified and discussed here to explain these results. The observational evidence of a shallower slope and the presence of rich small scale structures may have implications for the current understanding of the interstellar turbulence.Comment: 6 pages, 5 figures. Accepted for publication in ApJ. The definitive version will be available at http://iopscience.iop.org

    MHD Stability of ISM Phase Transition Layers I: Magnetic Field Orthogonal to Front

    Full text link
    We consider the scenario of a magnetic field orthogonal to a front separating two media of different temperatures and densities, such as cold and warm interstellar gas, in a 2-D plane-parallel geometry. A linear stability analysis is performed to assess the behavior of both evaporation and condensation fronts when subject to incompressible, corrugational perturbations with wavelengths larger than the thickness of the front. We discuss the behavior of fronts in both super-Alfvenic and sub-Alfvenic flows. Since the propagation speed of fronts is slow in the ISM, it is the sub-Alfvenic regime that is relevant, and magnetic fields are a significant influence on front dynamics. In this case we find that evaporation fronts, which are unstable in the hydrodynamic regime, are stabilized. Condensation fronts are unstable, but for parameters typical of the neutral ISM the growth rates are so slow that steady state fronts are effectively stable. However, the instability may become important if condensation proceeds at a sufficiently fast rate. This paper is the first in a series exploring the linear and nonlinear effects of magnetic field strength and orientation on the corrugational instability, with the ultimate goal of addressing outstanding questions about small-scale ISM structure.Comment: 18 pages, 3 figures, and 2 tables. To be published in The Astrophysical Journa

    Spatial and Temporal Variations in Small-Scale Galactic HI Structure Toward 3C~138

    Full text link
    We present three epochs of VLBA observations of Galactic HI absorption toward the quasar 3C~138 with resolutions of 20 mas (~ 10 AU). This analysis includes VLBA data from observations in 1999 and 2002 along with a reexamination of 1995 VLBA data. Improved data reduction and imaging techniques have led to an order of magnitude improvement in sensitivity compared to previous work. With these new data we confirm the previously detected milliarcsecond scale spatial variations in the HI opacity at the level of Delta(tau_{max}) =0.50 \pm 0.05. The typical size scale of the optical depth variations is ~ 50 mas or 25 AU. In addition, for the first time we see clear evidence for temporal variations in the HI opacity over the seven year time span of our three epochs of data. We also attempted to detect the magnetic field strength in the HI gas using the Zeeman effect. From this analysis we have been able to place a 3 sigma upper limit on the magnetic field strength per pixel of ~45 muG. We have also been able to calculate for the first time the plane of sky covering fraction of the small scale HI gas of ~10%. We also find that the line widths of the milliarcsecond sizescale HI features are comparable to those determined from previous single dish measurements toward 3C~138, suggesting that the opacity variations cannot be due to changes in the HI spin temperature. From these results we favor a density enhancement interpretation for the small scale HI structures, although these enhancements appear to be of short duration and are unlikely to be in equilibrium.Comment: 34 pages, 8 figures. Figures 3 & 4 are in color. Accepted to A

    The Structure of the Cold Neutral ISM on 10-100 Astronomical Unit Scales

    Full text link
    We have used the Very Long Baseline Array (VLBA) and the Very Large Array (VLA) to image Galactic neutral hydrogen in absorption towards four compact extragalactic radio sources with 10 milliarcsecond resolution. Previous VLBA data by Faison et al (1998) have shown the existence of prominent structures in the direction of the extragalactic source 3C~138 with scale sizes of 10-20 AU with changes in HI optical depth in excess of 0.8 ±\pm 0.1. In this paper we confirm the small scale \hi optical depth variations toward 3C~147 suggested earlier at a level up to 20 % ±\pm 5% . The sources 3C~119, 2352+495 and 0831+557 show no significant change in \hi optical depth across the sources with one sigma limits of 30%, 50%, and 100%. Of the seven sources recently investigated with the VLBA and VLA, only 3C~138 and 3C~147 show statistically significant variations in HI opacities. Deshpande (2000) have attempted to explain the observed small-scale structure as an extension of the observed power spectrum of structure on parsec size scales. The predictions of Deshpande (2000) are consistent with the VLBA HI data observed in the directions of a number of sources, including 3C~147, but are not consistent with our previous observations of the HI opacity structure toward 3C~138

    Triggered Star Formation and Dust around Mid-Infrared-Identified Bubbles

    Full text link
    We use Two Micron All Sky Survey, GLIMPSE, and MIPSGAL survey data to analyze the young stellar object (YSO) and warm dust distribution around several mid-infrared-identified bubbles. We identify YSOs using J-band to 8 um photometry and correlate their distribution relative to the PDR (as traced by diffuse 8 um emission) which we assume to be associated with and surround a HII region. We find that only 20% of the sample HII regions appear to have a significant number of YSOs associated with their PDRs, implying that triggered star formation mechanisms acting on the boundary of the expanding HII region do not dominate in this sample. We also measure the temperature of dust inside 20 HII regions using 24 um and 70 um MIPSGAL images. In eight circularly symmetric sources we analyze the temperature distribution and find shallower temperature gradients than is predicted by an analytic model. Possible explanations of this shallow temperature gradient are a radially dependent grain-size distribution and/or non-equilibrium radiative processes.Comment: 35 pages, 17 figures, accepted for publication in Ap
    corecore