40 research outputs found
Safe and Efficient Silencing with a Pol II, but not a Pol lII, Promoter Expressing an Artificial miRNA Targeting Human Huntingtin
Huntington\u27s disease is a devastating, incurable neurodegenerative disease affecting up to 12 per 100,000 patients worldwide. The disease is caused by a mutation in the Huntingtin (Htt) gene. There is interest in reducing mutant Huntingtin by targeting it at the mRNA level, but the maximum tolerable dose and long-term effects of such a treatment are unknown. Using a self-complementary AAV9 vector, we delivered a mir-155-based artificial miRNA under the control of the chicken β-actin or human U6 promoter. In mouse brain, the artificial miRNA reduced the human huntingtin mRNA by 50%. The U6, but not the CβA promoter, produced the artificial miRNA at supraphysiologic levels. Embedding the antisense strand in a U6-mir-30 scaffold reduced expression of the antisense strand but increased the sense strand. In mice treated with scAAV9-U6-mir-155-HTT or scAAV9-CβA-mir-155-HTT, activated microglia were present around the injection site 1 month post-injection. Six months post-injection, mice treated with scAAV9-CβA-mir-155-HTT were indistinguishable from controls. Those that received scAAV9-U6-mir-155-HTT showed behavioral abnormalities and striatal damage. In conclusion, miRNA backbone and promoter can be used together to modulate expression levels and strand selection of artificial miRNAs, and in brain, the CβA promoter can provide an effective and safe dose of a human huntingtin miRNA
Recommended from our members
Artificial miRNAs Reduce Human Mutant Huntingtin Throughout the Striatum in a Transgenic Sheep Model of Huntington's Disease.
Huntington's disease (HD) is a fatal neurodegenerative disease caused by a genetic expansion of the CAG repeat region in the huntingtin (HTT) gene. Studies in HD mouse models have shown that artificial miRNAs can reduce mutant HTT, but evidence for their effectiveness and safety in larger animals is lacking. HD transgenic sheep express the full-length human HTT with 73 CAG repeats. AAV9 was used to deliver unilaterally to HD sheep striatum an artificial miRNA targeting exon 48 of the human HTT mRNA under control of two alternative promoters: U6 or CβA. The treatment reduced human mutant (m) HTT mRNA and protein 50-80% in the striatum at 1 and 6 months post injection. Silencing was detectable in both the caudate and putamen. Levels of endogenous sheep HTT protein were not affected. There was no significant loss of neurons labeled by DARPP32 or NeuN at 6 months after treatment, and Iba1-positive microglia were detected at control levels. It is concluded that safe and effective silencing of human mHTT protein can be achieved and sustained in a large-animal brain by direct delivery of an AAV carrying an artificial miRNA
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial
Background
Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain.
Methods
RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and
ClinicalTrials.gov
,
NCT00541047
.
Findings
Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths.
Interpretation
Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy.
Funding
Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society
Abstract 2382: Aberrant glycogen accumulation alters gene expression and promotes lung tumor progression <i>in vivo</i>
Abstract
Lung cancer is one of the most prevalent cancers worldwide, accounting for nearly two million new cases each year. Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer and is the leading cause of cancer related mortalities worldwide. LUAD has an extremely poor five-year survival rate, which is likely due to cases being diagnosed at advanced stages and thus being more difficult to treat the metastatic disease. Identifying the molecular processes that contribute to disease progression is a critical goal in lung cancer research that could lead to predictive biomarkers and novel therapies. Glycogen is the primary form of carbohydrate storage in mammalian cells, and its degradation product, Glucose 6-Phosphate (G6P) feeds directly into glycolysis, making glycogen intimately connected to central carbon metabolism. Recently, aberrant glycogen accumulation in lung tumors has been reported to promote lung cancer progression, driven by largely unknown mechanisms. We recently generated a transgenic KRASG12D/p53-/- LUAD mouse model that also lacks the glycogen phosphatase laforin (LKO). This model develops increased glycogen accumulation in the lungs and displays accelerated tumor growth compared to the KRASG12D/p53-/- control (WT), as measured by Ki67 staining. To identify potential biological processes perturbed by LUAD-glycogen, we performed RNA-seq on lung tumors resected from WT and LKO mice. We identified over 300 genes that are differentially expressed between WT and LKO lung tumors. Specifically, gene set enrichment analysis (GSEA) revealed genes that were upregulated in LKO lung tumors were involved in extracellular matrix remodeling, cell-to-cell communication, and cell proliferation. All of these processes are implicated in tumor growth, which supports our initial observation that LKO mice have increased tumor burden and disease progression. Our findings ultimately highlight several potential mechanisms by which LUAD-glycogen promotes LUAD tumor progression, which can be further investigated to identify novel biomarkers and therapeutic targets.
Citation Format: Jessica Faith Lamb, Lindsey R. Conroy, Alexis N. James, Michael D. Buoncristiani, Eric R. Relich, Lindsay E. Young, Christine F. Branson, Ramon C. Sun. Aberrant glycogen accumulation alters gene expression and promotes lung tumor progression in vivo [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 2382.</jats:p
Safe and Efficient Silencing with a Pol II, but Not a Pol lII, Promoter Expressing an Artificial miRNA Targeting Human Huntingtin
Huntington's disease is a devastating, incurable neurodegenerative disease affecting up to 12 per 100,000 patients worldwide. The disease is caused by a mutation in the Huntingtin (Htt) gene. There is interest in reducing mutant Huntingtin by targeting it at the mRNA level, but the maximum tolerable dose and long-term effects of such a treatment are unknown. Using a self-complementary AAV9 vector, we delivered a mir-155-based artificial miRNA under the control of the chicken beta-actin or human U6 promoter. In mouse brain, the artificial miRNA reduced the human huntingtin mRNA by 50%. The U6, but not the CbetaA promoter, produced the artificial miRNA at supraphysiologic levels. Embedding the antisense strand in a U6-mir-30 scaffold reduced expression of the antisense strand but increased the sense strand. In mice treated with scAAV9-U6-mir-155-HTT or scAAV9-CbetaA-mir-155-HTT, activated microglia were present around the injection site 1 month post-injection. Six months post-injection, mice treated with scAAV9-CbetaA-mir-155-HTT were indistinguishable from controls. Those that received scAAV9-U6-mir-155-HTT showed behavioral abnormalities and striatal damage. In conclusion, miRNA backbone and promoter can be used together to modulate expression levels and strand selection of artificial miRNAs, and in brain, the CbetaA promoter can provide an effective and safe dose of a human huntingtin miRNA
Artificial miRNAs reduce human mutant Huntingtin throughout the striatum in a transgenic sheep model of Huntington's disease
Full list of authors omitted for brevity. For full list see article.Huntington's disease (HD) is a fatal neurodegenerative disease caused by a genetic expansion of the CAG repeat region in the huntingtin (HTT) gene. Studies in HD mouse models have shown that artificial miRNAs can reduce mutant HTT but evidence for their effectiveness and safety in larger animals is lacking. HD transgenic sheep express the full-length human HTT with 73 CAG repeats. We used AAV9 to unilaterally deliver to HD sheep striatum an artificial miRNA targeting exon 48 of the human HTT mRNA under control of two alternative promoters- U6 or CbetaA. The treatment reduced human mutant (m) HTT mRNA and protein 50-80% in the striatum at one and six-months post-injection. Silencing was detectable in both caudate and putamen. Levels of endogenous sheep HTT protein were not affected. There was no significant loss of neurons labeled by DARPP32 or NeuN at six months after treatment, Iba1-positive microglia were detected at control levels. We conclude that safe and effective silencing of human mHTT protein can be achieved and sustained in a large animal brain by direct delivery of an AAV carrying an artificial miRNA.Neuroscienc
