100 research outputs found
Oncogenic transformation of Drosophila somatic cells induces a functional piRNA pathway.
Germline genes often become re-expressed in soma-derived human cancers as "cancer/testis antigens" (CTAs), and piRNA (PIWI-interacting RNA) pathway proteins are found among CTAs. However, whether and how the piRNA pathway contributes to oncogenesis in human neoplasms remain poorly understood. We found that oncogenic Ras combined with loss of the Hippo tumor suppressor pathway reactivates a primary piRNA pathway in Drosophila somatic cells coincident with oncogenic transformation. In these cells, Piwi becomes loaded with piRNAs derived from annotated generative loci, which are normally restricted to either the germline or the somatic follicle cells. Negating the pathway leads to increases in the expression of a wide variety of transposons and also altered expression of some protein-coding genes. This correlates with a reduction in the proliferation of the transformed cells in culture, suggesting that, at least in this context, the piRNA pathway may play a functional role in cancer.We thank the Cold Spring
Harbor Laboratory Microscopy Shared Resources for assistance,
which are funded in part by Cancer Center Support Grant
5P30CA045508. This work was supported in part by a grant
from the STARR Cancer Consortium, grants from the National
Institutes of Health (NIH MERIT Award, R37GM062534 to G.
J.H.), and a generous gift from Kathryn W. Davis to G.J.H. N.P.
and G.J.H. are or were Investigators of the Howard Hughes
Medical Institute. Stocks obtained from the Bloomington Drosophila
Stock Center (NIH P40OD018537) were used in this study.
Cell lines have been deposited by A.S. at the Drosophila Genomics
Resource Center (NIH 2P40OD010949-10A1). G.J.H. is
supported by Cancer Research UK and is a Wellcome Trust
Investigator.This is the final version of the article. It first appeared from Cold Spring Harbor Press at http://dx.doi.org/10.1101/gad.284927.116
RNF17 blocks promiscuous activity of PIWI proteins in mouse testes
PIWI proteins and their associated piRNAs protect germ cells from the activity of mobile genetic elements. Two classes of piRNAs-primary and secondary-are defined by their mechanisms of biogenesis. Primary piRNAs are processed directly from transcripts of piRNA cluster loci, whereas secondary piRNAs are generated in an adaptive amplification loop, termed the ping-pong cycle. In mammals, piRNA populations are dynamic, shifting as male germ cells develop. Embryonic piRNAs consist of both primary and secondary species and are mainly directed toward transposons. In meiotic cells, the piRNA population is transposon-poor and largely restricted to primary piRNAs derived from pachytene piRNA clusters. The transition from the embryonic to the adult piRNA pathway is not well understood. Here we show that RNF17 shapes adult meiotic piRNA content by suppressing the production of secondary piRNAs. In the absence of RNF17, ping-pong occurs inappropriately in meiotic cells. Ping-pong initiates piRNA responses against not only transposons but also protein-coding genes and long noncoding RNAs, including genes essential for germ cell development. Thus, the sterility of Rnf17 mutants may be a manifestation of a small RNA-based autoimmune reaction
Two waves of de novo methylation during mouse germ cell development
During development, mammalian germ cells reprogram their epigenomes via a genome-wide erasure and de novo rewriting of DNA methylation marks. We know little of how methylation patterns are specifically determined. The piRNA pathway is thought to target the bulk of retrotransposon methylation. Here we show that most retrotransposon sequences are modified by default de novo methylation. However, potentially active retrotransposon copies evade this initial wave, likely mimicking features of protein-coding genes. These elements remain transcriptionally active and become targets of piRNA-mediated methylation. Thus, we posit that these two waves play essential roles in resetting germ cell epigenomes at each generation
piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis.
MIWI catalytic activity is required for spermatogenesis, indicating that piRNA-guided cleavage is critical for germ cell development. To identify meiotic piRNA targets, we augmented the mouse piRNA repertoire by introducing a human meiotic piRNA cluster. This triggered a spermatogenesis defect by inappropriately targeting the piRNA machinery to mouse mRNAs essential for germ cell development. Analysis of such de novo targets revealed a signature for pachytene piRNA target recognition. This enabled identification of both transposable elements and meiotically expressed protein-coding genes as targets of native piRNAs. Cleavage of genic targets began at the pachytene stage and resulted in progressive repression through meiosis, driven at least in part via the ping-pong cycle. Our data support the idea that meiotic piRNA populations must be strongly selected to enable successful spermatogenesis, both driving the response away from essential genes and directing the pathway toward mRNA targets that are regulated by small RNAs in meiotic cells.This work was supported by the National Institutes of Health R37 grant GM062534-14 to G.J.H. iTRAQ was performed with assistance from the Cold Spring Harbor Laboratory Proteomics Shared Resource, which is supported by Cancer Center support grant 5P30CA045508. W.S.S.G. is a McClintock Fellow of the Watson School of Biological Sciences and is supported by the NSS Scholarship from the Agency for Science, Technology and Research, Singapore. O.H.T. is supported by a fellowship of the Human Frontier Science Program. R.B. is supported by the Starr Centennial Scholarship from the Watson School of Biological Sciences. G.J.H. is a Howard Hughes Medical Institute Investigator.This is the final version of the article. It first appeared from Cold Spring Harbor Laboratory Press via http://dx.doi.org/10.1101/gad.260455.11
Dual functions of Macpiwi1 in transposon silencing and stem cell maintenance in the flatworm Macrostomum lignano
PIWI proteins and piRNA pathways are essential for transposon silencing and some aspects of gene regulation during animal germline development. In contrast to most animal species, some flatworms also express PIWIs and piRNAs in somatic stem cells, where they are required for tissue renewal and regeneration. Here, we have identified and characterized piRNAs and PIWI proteins in the emerging model flatworm Macrostomum lignano. We found that M. lignano encodes at least three PIWI proteins. One of these, Macpiwi1, acts as a key component of the canonical piRNA pathway in the germline and in somatic stem cells. Knockdown of Macpiwi1 dramatically reduces piRNA levels, derepresses transposons, and severely impacts stem cell maintenance. Knockdown of the piRNA biogenesis factor Macvasa caused an even greater reduction in piRNA levels with a corresponding increase in transposons. Yet, in Macvasa knockdown animals, we detected no major impact on stem cell self-renewal. These results may suggest stem cell maintenance functions of PIWI proteins in flatworms that are distinguishable from their impact on transposons and that might function independently of what are considered canonical piRNA populations
Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano.
The free-living flatworm, Macrostomum lignano has an impressive regenerative capacity. Following injury, it can regenerate almost an entirely new organism because of the presence of an abundant somatic stem cell population, the neoblasts. This set of unique properties makes many flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell-fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of M. lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ∼75% of its sequence being comprised of simple repeats and transposon sequences. This has made high-quality assembly from Illumina reads alone impossible (N50=222 bp). We therefore generated 130× coverage by long sequencing reads from the Pacific Biosciences platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene-expression patterns during regeneration, examining pathways important to stem cell function.This work is supported by National Institutes of Health Grants R37 GM062534 (to G.J.H.) and R01-HG006677 (to M.S.); National Science Foundation Grant DBI-1350041 (to M.S.); and a Swiss National Science Foundation Grant 31003A-143732 (to L.S.). This work was performed with assistance from Cold Spring Harbor Laboratory Shared Resources, which are funded, in part, by Cancer Center Support Grant 5P30CA045508.This is the final version of the article. It first appeared from PNAS via http://dx.doi.org/10.1073/pnas.151671811
An Assessment of the Food Companies Sustainability Policies through a Greenwashing Indicator
There is an increasing interest in green marketing as a powerful tool to enhance the agrifood companies’ reputation and competitiveness; this makes it necessary to provide tools, for the consumers and the other stakeholders in the food system, able to detect the presence of distorted or false information often defined as greenwashing. It is also important for the agrifood companies to be able to prevent their communication to be unintentionally perceived as greenwashing, thus fully exploiting the value added provided by an effective communication of their sustainability policies. The goal of this paper is to provide a monitoring tool able to support the food companies definition of effective green marketing strategies, avoiding the risk of greenwashing; moreover supporting the other food system stakeholders’ critical analysis of the sustainability communication coming from the food companies. To this end a list of indicators coming from different organizations (Greenpeace, EnviroMedia Social Marketing and Oregon University, Terrachoice, Futerra) and authors (J.Grant, 2009) have been chosen and integrated in order to cover a broad range of sustainability dimensions and communication suggestions finalised to avoiding greenwashing in the agrifood sector. The level of correctness and relevance of the companies communication as been assessed by measuring the number of actions described in the food companies’ Sustainability Report, falling within the indicators belonging to the different categories of green marketing and greenwashing. The indicators have been tested on a large Italian food company: Barilla, by considering its Sustainability Report for the year 2016. The results showed that the sustainability actions related to possible greenwashing represent a relatively low share of the total action implemented by Barilla. Most interesting is the capacity of this analytical tool to encompass a broad range of dimensions related to the companies green marketing strategies evaluation; this allows also other stakeholders to more clearly analyse the capacity of a company to provide a clear honest and complete report on their sustainability activities. Further studies should weigh the different green marketing and greenwashing indicators in order to appreciate their relevance in contributing to the overall level of correct communication. A sample of representative food chain stakeholders should be involved in providing an expert evaluation
Epigenetic profiles signify cell fate plasticity in unipotent spermatogonial stem and progenitor cells
Spermatogonial stem and progenitor cells (SSCs) generate adult male gametes. During in vitro expansion, these unipotent murine cells spontaneously convert to multipotent adult spermatogonial-derived stem cells (MASCs). Here we investigate this conversion process through integrative transcriptomic and epigenomic analyses. We find in SSCs that promoters essential to maintenance and differentiation of embryonic stem cells (ESCs) are enriched with histone H3-lysine4 and -lysine 27 trimethylations. These bivalent modifications are maintained at most somatic promoters after conversion, bestowing MASCs an ESC-like promoter chromatin. At enhancers, the core pluripotency circuitry is activated partially in SSCs and completely in MASCs, concomitant with loss of germ cell-specific gene expression and initiation of embryonic-like programs. Furthermore, SSCs in vitro maintain the epigenomic characteristics of germ cells in vivo. Our observations suggest that SSCs encode innate plasticity through the epigenome and that both conversion of promoter chromatin states and activation of cell type-specific enhancers are prominent features of reprogramming
Recommended from our members
piRNA-guided co-transcriptional silencing coopts nuclear export factors.
The PIWI-interacting RNA (piRNA) pathway is a small RNA-based immune system that controls the expression of transposons and maintains genome integrity in animal gonads. In Drosophila, piRNA-guided silencing is achieved, in part, via co-transcriptional repression of transposons by Piwi. This depends on Panoramix (Panx); however, precisely how an RNA binding event silences transcription remains to be determined. Here we show that Nuclear Export Factor 2 (Nxf2) and its co-factor, Nxt1, form a complex with Panx and are required for co-transcriptional silencing of transposons in somatic and germline cells of the ovary. Tethering of Nxf2 or Nxt1 to RNA results in silencing of target loci and the concomitant accumulation of repressive chromatin marks. Nxf2 and Panx proteins are mutually required for proper localization and stability. We mapped the protein domains crucial for the Nxf2/Panx complex formation and show that the amino-terminal portion of Panx is sufficient to induce transcriptional silencing
Molecular dissection of the male germ cell lineage identifies putative spermatogonial stem cells in rhesus macaques
- …
