131 research outputs found
Solving the mu problem with a heavy Higgs boson
We discuss the generation of the mu-term in a class of supersymmetric models
characterized by a low energy effective superpotential containing a term lambda
S H_1 H_2 with a large coupling lambda~2. These models generically predict a
lightest Higgs boson well above the LEP limit of 114 GeV and have been shown to
be compatible with the unification of gauge couplings. Here we discuss a
specific example where the superpotential has no dimensionful parameters and we
point out the relation between the generated mu-term and the mass of the
lightest Higgs boson. We discuss the fine-tuning of the model and we find that
the generation of a phenomenologically viable mu-term fits very well with a
heavy lightest Higgs boson and a low degree of fine-tuning. We discuss
experimental constraints from collider direct searches, precision data, thermal
relic dark matter abundance, and WIMP searches finding that the most natural
region of the parameter space is still allowed by current experiments. We
analyse bounds on the masses of the superpartners coming from Naturalness
arguments and discuss the main signatures of the model for the LHC and future
WIMP searches.Comment: Extended discussion of the LHC phenomenology, as published on JHEP
plus an addendum on the existence of further extremal points of the
potential. 47 pages, 16 figure
Cellular Radiosensitivity: How much better do we understand it?
Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies.
Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation
Abnormal social reward processing in autism as indexed by pupillary responses to happy faces
Background:
Individuals with Autism Spectrum Disorders (ASD) typically show impaired eye contact during social interactions. From a young age, they look less at faces than typically developing (TD) children and tend to avoid direct gaze. However, the reason for this behavior remains controversial; ASD children might avoid eye contact because they perceive the eyes as aversive or because they do not find social engagement through mutual gaze rewarding.
Methods:
We monitored pupillary diameter as a measure of autonomic response in children with ASD (n = 20, mean age = 12.4) and TD controls (n = 18, mean age = 13.7) while they looked at faces displaying different emotions. Each face displayed happy, fearful, angry or neutral emotions with the gaze either directed to or averted from the subjects.
Results:
Overall, children with ASD and TD controls showed similar pupillary responses; however, they differed significantly in their sensitivity to gaze direction for happy faces. Specifically, pupillary diameter increased among TD children when viewing happy faces with direct gaze as compared to those with averted gaze, whereas children with ASD did not show such sensitivity to gaze direction. We found no group differences in fixation that could explain the differential pupillary responses. There was no effect of gaze direction on pupil diameter for negative affect or neutral faces among either the TD or ASD group.
Conclusions:
We interpret the increased pupillary diameter to happy faces with direct gaze in TD children to reflect the intrinsic reward value of a smiling face looking directly at an individual. The lack of this effect in children with ASD is consistent with the hypothesis that individuals with ASD may have reduced sensitivity to the reward value of social stimuli
Visual attention and action: How cueing, direct mapping, and social interactions drive orienting
Despite considerable interest in both action perception and social attention over the last 2 decades, there has been surprisingly little investigation concerning how the manual actions of other humans orient visual attention. The present review draws together studies that have measured the orienting of attention, following observation of another’s goal-directed action. Our review proposes that, in line with the literature on eye gaze, action is a particularly strong orienting cue for the visual system. However, we additionally suggest that action may orient visual attention using mechanisms, which gaze direction does not (i.e., neural direct mapping and corepresentation). Finally, we review the implications of these gaze-independent mechanisms for the study of attention to action. We suggest that our understanding of attention to action may benefit from being studied in the context of joint action paradigms, where the role of higher level action goals and social factors can be investigated
Spotting Signs of Autism in 3-Year-Olds: Comparing Information from Parents and Preschool Staff
© 2018, The Author(s). Preschool informants may provide valuable information about symptoms of autism spectrum disorder (ASD) in young children. We compared the diagnostic accuracy of ratings by preschool staff with those by parents of 3-year-old children using the Achenbach System of Empirically Based Assessment Preschool Forms. The sample consisted of 32 children at familial risk for ASD without diagnosis, 10 children at risk for ASD with diagnosis, and 14 low-risk typically developing controls. Preschool staff ratings were more accurate than parent ratings at differentiating children with and without ASD, and more closely associated with clinician-rated symptoms. These results point to the value of information from preschool informants in early detection and diagnostic assessments
Cdk2 Is Required for p53-Independent G2/M Checkpoint Control
The activation of phase-specific cyclin-dependent kinases (Cdks) is associated with ordered cell cycle transitions. Among the mammalian Cdks, only Cdk1 is essential for somatic cell proliferation. Cdk1 can apparently substitute for Cdk2, Cdk4, and Cdk6, which are individually dispensable in mice. It is unclear if all functions of non-essential Cdks are fully redundant with Cdk1. Using a genetic approach, we show that Cdk2, the S-phase Cdk, uniquely controls the G2/M checkpoint that prevents cells with damaged DNA from initiating mitosis. CDK2-nullizygous human cells exposed to ionizing radiation failed to exclude Cdk1 from the nucleus and exhibited a marked defect in G2/M arrest that was unmasked by the disruption of P53. The DNA replication licensing protein Cdc6, which is normally stabilized by Cdk2, was physically associated with the checkpoint regulator ATR and was required for efficient ATR-Chk1-Cdc25A signaling. These findings demonstrate that Cdk2 maintains a balance of S-phase regulatory proteins and thereby coordinates subsequent p53-independent G2/M checkpoint activation
A Kinase-Independent Role for the Rad3ATR-Rad26ATRIP Complex in Recruitment of Tel1ATM to Telomeres in Fission Yeast
ATM and ATR are two redundant checkpoint kinases essential for the stable maintenance of telomeres in eukaryotes. Previous studies have established that MRN (Mre11-Rad50-Nbs1) and ATRIP (ATR Interacting Protein) interact with ATM and ATR, respectively, and recruit their partner kinases to sites of DNA damage. Here, we investigated how Tel1ATM and Rad3ATR recruitment to telomeres is regulated in fission yeast. Quantitative chromatin immunoprecipitation (ChIP) assays unexpectedly revealed that the MRN complex could also contribute to the recruitment of Tel1ATM to telomeres independently of the previously established Nbs1 C-terminal Tel1ATM interaction domain. Recruitment of Tel1ATM to telomeres in nbs1-c60Δ cells, which lack the C-terminal 60 amino acid Tel1ATM interaction domain of Nbs1, was dependent on Rad3ATR-Rad26ATRIP, but the kinase domain of Rad3ATR was dispensable. Thus, our results establish that the Rad3ATR-Rad26ATRIP complex contributes to the recruitment of Tel1ATM independently of Rad3ATR kinase activity, by a mechanism redundant with the Tel1ATM interaction domain of Nbs1. Furthermore, we found that the N-terminus of Nbs1 contributes to the recruitment of Rad3ATR-Rad26ATRIP to telomeres. In response to replication stress, mammalian ATR–ATRIP also contributes to ATM activation by a mechanism that is dependent on the MRN complex but independent of the C-terminal ATM interaction domain of Nbs1. Since telomere protection and DNA damage response mechanisms are very well conserved between fission yeast and mammalian cells, mammalian ATR–ATRIP may also contribute to the recruitment of ATM to telomeres and to sites of DNA damage independently of ATR kinase activity
Human Papillomaviruses Activate the ATM DNA Damage Pathway for Viral Genome Amplification upon Differentiation
Human papillomaviruses (HPV) are the causative agents of cervical cancers. The infectious HPV life cycle is closely linked to the differentiation state of the host epithelia, with viral genome amplification, late gene expression and virion production restricted to suprabasal cells. The E6 and E7 proteins provide an environment conducive to DNA synthesis upon differentiation, but little is known concerning the mechanisms that regulate productive viral genome amplification. Using keratinocytes that stably maintain HPV-31 episomes, and chemical inhibitors, we demonstrate that viral proteins activate the ATM DNA damage response in differentiating cells, as indicated by phosphorylation of CHK2, BRCA1 and NBS1. This activation is necessary for viral genome amplification, as well as for formation of viral replication foci. In contrast, inhibition of ATM kinase activity in undifferentiated keratinocytes had no effect on the stable maintenance of viral genomes. Previous studies have shown that HPVs induce low levels of caspase 3/7 activation upon differentiation and that this is important for cleavage of the E1 replication protein and genome amplification. Our studies demonstrate that caspase cleavage is induced upon differentiation of HPV positive cells through the action of the DNA damage protein kinase CHK2, which may be activated as a result of E7 binding to the ATM kinase. These findings identify a major regulatory mechanism responsible for productive HPV replication in differentiating cells. Our results have potential implications for the development of anti-viral therapies to treat HPV infections
- …
