44 research outputs found

    Analysis of a c0t-1 library enables the targeted identification of minisatellite and satellite families in Beta vulgaris

    Get PDF
    Zakrzewski F, Wenke T, Holtgräwe D, Weisshaar B, Schmidt T. Analysis of a c0t-1 library enables the targeted identification of minisatellite and satellite families in Beta vulgaris. BMC Plant Biology. 2010;10(1): 8.BACKGROUND: Repetitive DNA is a major fraction of eukaryotic genomes and occurs particularly often in plants. Currently, the sequencing of the sugar beet (Beta vulgaris) genome is under way and knowledge of repetitive DNA sequences is critical for the genome annotation. We generated a c0t-1 library, representing highly to moderately repetitive sequences, for the characterization of the major B. vulgaris repeat families. While highly abundant satellites are well-described, minisatellites are only poorly investigated in plants. Therefore, we focused on the identification and characterization of these tandemly repeated sequences. RESULTS: Analysis of 1763 c0t-1 DNA fragments, providing 442 kb sequence data, shows that the satellites pBV and pEV are the most abundant repeat families in the B. vulgaris genome while other previously described repeats show lower copy numbers. We isolated 517 novel repetitive sequences and used this fraction for the identification of minisatellite and novel satellite families. Bioinformatic analysis and Southern hybridization revealed that minisatellites are moderately to highly amplified in B. vulgaris. FISH showed a dispersed localization along most chromosomes clustering in arrays of variable size and number with exclusion and depletion in distinct regions. CONCLUSION: The c0t-1 library represents major repeat families of the B. vulgaris genome, and analysis of the c0t-1 DNA was proven to be an efficient method for identification of minisatellites. We established, so far, the broadest analysis of minisatellites in plants and observed their chromosomal localization providing a background for the annotation of the sugar beet genome and for the understanding of the evolution of minisatellites in plant genomes

    Genotyping-by-sequencing-based high-resolution mapping reveals a single candidate gene for the grapevine veraison locus Ver1

    Get PDF
    Veraison marks the transition from berry growth to berry ripening and is a crucial phenological stage in grapevine (Vitis vinifera): the berries become soft and begin to accumulate sugars, aromatic substances, and, in red cultivars, anthocyanins for pigmentation, while the organic acid levels begin to decrease. These changes determine the potential quality of wine. However, rising global temperatures lead to earlier flowering and ripening, which strongly influence wine quality. Here, we combined genotyping-by-sequencing with a bioinformatics pipeline on ∼150 F1 genotypes derived from a cross between the early ripening variety “Calardis Musqué” and the late-ripening variety “Villard Blanc”. Starting from 20,410 haplotype-based markers, we generated a high-density genetic map and performed a quantitative trait locus analysis based on phenotypic datasets evaluated over 20 yrs. Through locus-specific marker enrichment and recombinant screening of ∼1,000 additional genotypes, we refined the originally postulated 5-mb veraison locus, Ver1, on chromosome 16 to only 112 kb, allowing us to pinpoint the ethylene response factor VviERF027 (VCost.v3 gene ID: Vitvi16g00942, CRIBIv1 gene ID: VIT_16s0100g00400) as veraison candidate gene. Furthermore, the early veraison allele could be traced back to a clonal “Pinot” variant first mentioned in the seventeenth century. “Pinot Precoce Noir” passed this allele over “Madeleine Royale” to the maternal grandparent “Bacchus Weiss” and, ultimately, to the maternal parent “Calardis Musqué”. Our findings are crucial for ripening time control, thereby improving wine quality, and for breeding grapevines adjusted to climate change scenarios that have a major impact on agro-ecosystems in altering crop plant phenology

    Sugar Beet BeetMap-3, and Steps to Improve the Genome Assembly and Genome Sequence Annotation (W875)

    Get PDF
    Weisshaar B, Himmelbauer H, Schmidt T, et al. Sugar Beet BeetMap-3, and Steps to Improve the Genome Assembly and Genome Sequence Annotation (W875). Presented at the Plant and Animal Genome XXIV Conference, San Diego, USA

    Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris)

    Get PDF
    Kowar T, Zakrzewski F, Macas J, et al. Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris). BMC Plant Biology. 2016;16(1): 120.Background Sugar beet (Beta vulgaris) is an important crop of temperate climate zones, which provides nearly 30 % of the world’s annual sugar needs. From the total genome size of 758 Mb, only 567 Mb were incorporated in the recently published genome sequence, due to the fact that regions with high repetitive DNA contents (e.g. satellite DNAs) are only partially included. Therefore, to fill these gaps and to gain information about the repeat composition of centromeres and heterochromatic regions, we performed chromatin immunoprecipitation followed by sequencing (ChIP-Seq) using antibodies against the centromere-specific histone H3 variant of sugar beet (CenH3) and the heterochromatic mark of dimethylated lysine 9 of histone H3 (H3K9me2). Results ChIP-Seq analysis revealed that active centromeres containing CenH3 consist of the satellite pBV and the Ty3-gypsy retrotransposon Beetle7, while heterochromatin marked by H3K9me2 exhibits heterogeneity in repeat composition. H3K9me2 was mainly associated with the satellite family pEV, the Ty1-copia retrotransposon family Cotzilla and the DNA transposon superfamily of the En/Spm type. In members of the section Beta within the genus Beta, immunostaining using the CenH3 antibody was successful, indicating that orthologous CenH3 proteins are present in closely related species within this section. Conclusions The identification of repetitive genome portions by ChIP-Seq experiments complemented the sugar beet reference sequence by providing insights into the repeat composition of poorly characterized CenH3-chromatin and H3K9me2-heterochromatin. Therefore, our work provides the basis for future research and application concerning the sugar beet centromere and repeat rich heterochromatic regions characterized by the presence of H3K9me2

    Epigenetic Characterization of Satellite DNA in Sugar Beet (Beta vulgaris)

    Full text link

    DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.)

    No full text
    The methylation of cytosines shapes the epigenetic landscape of plant genomes, coordinates transgenerational epigenetic inheritance, represses the activity of transposable elements (TEs), affects gene expression and, hence, can influence the phenotype. Sugar beet (Beta vulgaris ssp. vulgaris), an important crop that accounts for 30% of worldwide sugar needs, has a relatively small genome size (758 Mbp) consisting of approximately 485 Mbp repetitive DNA (64%), in particular satellite DNA, retrotransposons and DNA transposons. Genome-wide cytosine methylation in the sugar beet genome was studied in leaves and leaf-derived callus with a focus on repetitive sequences, including retrotransposons and DNA transposons, the major groups of repetitive DNA sequences, and compared with gene methylation. Genes showed a specific methylation pattern for CG, CHG (H = A, C, and T) and CHH sites, whereas the TE pattern differed, depending on the TE class (class 1, retrotransposons and class 2, DNA transposons). Along genes and TEs, CG and CHG methylation was higher than that of adjacent genomic regions. In contrast to the relatively low CHH methylation in retrotransposons and genes, the level of CHH methylation in DNA transposons was strongly increased, pointing to a functional role of asymmetric methylation in DNA transposon silencing. Comparison of genome-wide DNA methylation between sugar beet leaves and callus revealed a differential methylation upon tissue culture. Potential epialleles were hypomethylated (lower methylation) at CG and CHG sites in retrotransposons and genes and hypermethylated (higher methylation) at CHH sites in DNA transposons of callus when compared with leaves

    Cytosine Methylation of an Ancient Satellite Family in the Wild Beet Beta procumbens

    Get PDF
    DNA methylation is an essential epigenetic feature for the regulation and maintenance of heterochromatin. Satellite DNA is a repetitive sequence component that often occurs in large arrays in heterochromatin of subtelomeric, intercalary and centromeric regions. Knowledge about the methylation status of satellite DNA is important for understanding the role of repetitive DNA in heterochromatization. In this study, we investigated the cytosine methylation of the ancient satellite family pEV in the wild beet Beta procumbens. The pEV satellite is widespread in species-specific pEV subfamilies in the genus Beta and most likely originated before the radiation of the Betoideae and Chenopodioideae. In B. procumbens , the pEV subfamily occurs abundantly and spans intercalary and centromeric regions. To uncover its cytosine methylation, we performed chromosome-wide immunostaining and bisulfite sequencing of pEV satellite repeats. We found that CG and CHG sites are highly methylated while CHH sites show only low levels of methylation. As a consequence of the low frequency of CG and CHG sites and the preferential occurrence of most cytosines in the CHH motif in pEV monomers, this satellite family displays only low levels of total cytosine methylation
    corecore