894 research outputs found

    DBT-enhanced cognitive-behavioral treatment for trichotillomania: A randomized controlled trial

    Get PDF
    Background and aims: Limited treatment options are available for trichotillomania (TTM) and most have modest outcomes. Suboptimal treatment results may be due to the failure of existing approaches to address all TTM styles. Methods: Thirty-eight DSM-IV TTM participants were randomly assigned across two study sites to Dialectical Behavior Therapy (DBT) -enhanced cognitive-behavioral treatment (consisting of an 11-week acute treatment and 3-month maintenance treatment) or a minimal attention control (MAC) condition. MAC participants had active treatment after the 11-week control condition. Follow-up study assessments were conducted three and six months after the maintenance period. Results: Open trial treatment resulted in significant improvement in TTM severity, emotion regulation (ER) capacity, experiential avoidance, anxiety and depression with changes generally maintained over time. In the randomized controlled trial, those with active treatment had greater improvement than those in the MAC condition for both TTM severity and ER capacity. Correlations between changes in TTM severity and ER capacity were not reported at post-treatment but did occur in maintenance and follow-up indicating reduced TTM severity with improved ER capacity. Conclusions: DBT-enhanced cognitive-behavioral treatment is a promising treatment for TTM. Future studies should compare this approach to other credible treatment interventions and investigate the efficacy of this approach in more naturalistic samples with greater comorbidity

    Limits on uranium and thorium bulk content in GERDA Phase I detectors

    Full text link
    Internal contaminations of 238^{238}U, 235^{235}U and 232^{232}Th in the bulk of high purity germanium detectors are potential backgrounds for experiments searching for neutrinoless double beta decay of 76^{76}Ge. The data from GERDA Phase~I have been analyzed for alpha events from the decay chain of these contaminations by looking for full decay chains and for time correlations between successive decays in the same detector. No candidate events for a full chain have been found. Upper limits on the activities in the range of a few nBq/kg for 226^{226}Ra, 227^{227}Ac and 228^{228}Th, the long-lived daughter nuclides of 238^{238}U, 235^{235}U and 232^{232}Th, respectively, have been derived. With these upper limits a background index in the energy region of interest from 226^{226}Ra and 228^{228}Th contamination is estimated which satisfies the prerequisites of a future ton scale germanium double beta decay experiment.Comment: 2 figures, 7 page

    The background in the neutrinoless double beta decay experiment GERDA

    Get PDF
    The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double beta decay of 76Ge. The signature of the signal is a monoenergetic peak at 2039 keV, the Q-value of the decay, Q_bb. To avoid bias in the signal search, the present analysis does not consider all those events, that fall in a 40 keV wide region centered around Q_bb. The main parameters needed for the neutrinoless double beta decay analysis are described. A background model was developed to describe the observed energy spectrum. The model contains several contributions, that are expected on the basis of material screening or that are established by the observation of characteristic structures in the energy spectrum. The model predicts a flat energy spectrum for the blinding window around Q_bb with a background index ranging from 17.6 to 23.8*10^{-3} counts/(keV kg yr). A part of the data not considered before has been used to test if the predictions of the background model are consistent. The observed number of events in this energy region is consistent with the background model. The background at Q-bb is dominated by close sources, mainly due to 42K, 214Bi, 228Th, 60Co and alpha emitting isotopes from the 226Ra decay chain. The individual fractions depend on the assumed locations of the contaminants. It is shown, that after removal of the known gamma peaks, the energy spectrum can be fitted in an energy range of 200 kev around Q_bb with a constant background. This gives a background index consistent with the full model and uncertainties of the same size

    Results on ββ\beta\beta decay with emission of two neutrinos or Majorons in 76^{76}Ge from GERDA Phase I

    Get PDF
    A search for neutrinoless ββ\beta\beta decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN (Italy). Processes with spectral indices n = 1, 2, 3, 7 were searched for. No signals were found and lower limits of the order of 1023^{23} yr on their half-lives were derived, yielding substantially improved results compared to previous experiments with 76^{76}Ge. A new result for the half-life of the neutrino-accompanied ββ\beta\beta decay of 76^{76}Ge with significantly reduced uncertainties is also given, resulting in T1/22ν=(1.926±0.095)1021T^{2\nu}_{1/2} = (1.926 \pm 0.095)\cdot10^{21} yr.Comment: 3 Figure

    Flux Modulations seen by the Muon Veto of the GERDA Experiment

    Full text link
    The GERDA experiment at LNGS of INFN is equipped with an active muon veto. The main part of the system is a water Cherenkov veto with 66~PMTs in the water tank surrounding the GERDA cryostat. The muon flux recorded by this veto shows a seasonal modulation. Two effects have been identified which are caused by secondary muons from the CNGS neutrino beam (2.2 %) and a temperature modulation of the atmosphere (1.4 %). A mean cosmic muon rate of Iμ0=(3.477±0.002stat±0.067sys)×104I^0_{\mu} = (3.477 \pm 0.002_{\textrm{stat}} \pm 0.067_{\textrm{sys}}) \times 10^{-4}/(s\cdotm2^2) was found in good agreement with other experiments at LNGS at a depth of 3500~meter water equivalent.Comment: 7 pages, 6 figure

    2νββ2\nu\beta\beta decay of 76^{76}Ge into excited states with GERDA Phase I

    Full text link
    Two neutrino double beta decay of 76^{76}Ge to excited states of 76^{76}Se has been studied using data from Phase I of the GERDA experiment. An array composed of up to 14 germanium detectors including detectors that have been isotopically enriched in 76^{76}Ge was deployed in liquid argon. The analysis of various possible transitions to excited final states is based on coincidence events between pairs of detectors where a de-excitation γ\gamma ray is detected in one detector and the two electrons in the other. No signal has been observed and an event counting profile likelihood analysis has been used to determine Frequentist 90\,\% C.L. bounds for three transitions: 0g.s.+21+{0^+_{\rm g.s.}-2^+_1}: T1/22ν>T^{2\nu}_{1/2}>1.61023\cdot10^{23} yr, 0g.s.+01+{0^+_{\rm g.s.}-0^+_1}: T1/22ν>T^{2\nu}_{1/2}>3.71023\cdot10^{23} yr and 0g.s.+22+{0^+_{\rm g.s.}-2^+_2}: T1/22ν>T^{2\nu}_{1/2}>2.31023\cdot10^{23} yr. These bounds are more than two orders of magnitude larger than those reported previously. Bayesian 90\,\% credibility bounds were extracted and used to exclude several models for the 0g.s.+01+{0^+_{\rm g.s.}-0^+_1} transition

    Limit on the Radiative Neutrinoless Double Electron Capture of 36^{36}Ar from GERDA Phase I

    Get PDF
    Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of 36^{36}Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of 36^{36}Ar was established: T1/2>T_{1/2} > 3.6 ×\times 1021^{21} yr at 90 % C.I.Comment: 7 pages, 3 figure
    corecore