103,976 research outputs found
First-principles materials design of high-performing bulk photovoltaics with the LiNbO structure
The bulk photovoltaic effect is a long-known but poorly understood
phenomenon. Recently, however, the multiferroic bismuth ferrite has been
observed to produce strong photovoltaic response to visible light, suggesting
that the effect has been underexploited as well. Here we present three polar
oxides in the LiNbO structure that we predict to have band gaps in the 1-2
eV range and very high bulk photovoltaic response: PbNiO,
MgZnPbO, and LiBiO. All three have band gaps determined
by cations with electronic configurations, leading to conduction
bands composed of cation -orbitals and O -orbitals. This both
dramatically lowers the band gap and increases the bulk photovoltaic response
by as much as an order of magnitude over previous materials, demonstrating the
potential for high-performing bulk photovoltaics
A Sample of Quasars with Strong Nitrogen Emission Lines from the Sloan Digital Sky Survey
We report on 293 quasars with strong NIV] lambda 1486 or NIII] lambda 1750
emission lines (rest-frame equivalent width > 3 \AA) at 1.7 < z < 4.0 selected
from the Sloan Digital Sky Survey (SDSS) Fifth Data Release. These
nitrogen-rich (N-rich) objects comprise ~1.1% of the SDSS quasars. The
comparison between the N-rich quasars and other quasars shows that the two
quasar subsets share many common properties. We also confirm previous results
that N-rich quasars have much stronger Lya and NV lambda 1240 emission lines.
Strong nitrogen emission in all ionization states indicates high overall
nitrogen abundances in these objects. We find evidence that the nitrogen
abundance is closely related to quasar radio properties. The radio-loud
fraction in the NIII]-rich quasars is 26% and in the NIV]-rich quasars is 69%,
significantly higher than ~8% measured in other quasars with similar redshift
and luminosity. Therefore, the high nitrogen abundance in N-rich quasars could
be an indicator of a special quasar evolution stage, in which the radio
activity is also strong.Comment: 8 pages, 4 figures; accepted by ApJ (ApJ June 10, 2008, v680 n1
issue
Towards Fully Additively-Manufactured Permanent Magnet Synchronous Machines: Opportunities and Challenges
With the growing interest in electrification and as hybrid and pure electric powertrains are adopted in more applications, electrical machine design is facing challenges in terms of meeting very demanding performance metrics for example high specific power, harsh environments, etc. This provides clear motivation to explore the impact of advanced materials and manufacturing on the performance of electrical machines. This paper provides an overview of additive manufacturing (AM) approaches that can be used for constructing permanent magnet (PM) machines, with a specific focus on additively-manufactured iron core, winding, insulation, PM as well as cooling systems. Since there has only been a few attempts so far to explore AM in electrical machines (especially when it comes to fully additively-manufactured machines), the benefits and challenges of AM have not been comprehensively understood. In this regard, this paper offers a detailed comparison of multiple multi-material AM methods, showing not only the possibility of fully additively-manufactured PM machines but also the potential significant improvements in their mechanical, electromagnetic and thermal properties. The paper will provide a comprehensive discussion of opportunities and challenges of AM in the context of electrical machines
An algorithm for clock synchronization with the gradient property in sensor networks
We introduce a distributed algorithm for clock synchronization in sensor
networks. Our algorithm assumes that nodes in the network only know their
immediate neighborhoods and an upper bound on the network's diameter.
Clock-synchronization messages are only sent as part of the communication,
assumed reasonably frequent, that already takes place among nodes. The
algorithm has the gradient property of [2], achieving an O(1) worst-case skew
between the logical clocks of neighbors. As in the case of [3,8], the
algorithm's actions are such that no constant lower bound exists on the rate at
which logical clocks progress in time, and for this reason the lower bound of
[2,5] that forbids constant skew between neighbors does not apply
Refining grain structure and porosity of an aluminium alloy with intensive melt shearing
The official published version of the article can be obtained at the link below.Intensive melt shearing was achieved using a twin-screw machine to condition an aluminium alloy prior to solidification. The results show that intensive melt shearing has a significant grain-refining effect. In addition, the intensive melt shearing reduces both the volume fraction and the size of porosity. It can reduce the density index from 10.50% to 2.87% and the average size of porosity in the samples solidified under partial vacuum from around 1 mm to 100 μm.Financial support was obtained from the EPSRC and the Technology Strategy Board
Inversion formula and Parsval theorem for complex continuous wavelet transforms studied by entangled state representation
In a preceding Letter (Opt. Lett. 32, 554 (2007)) we have proposed complex
continuous wavelet transforms (CCWTs) and found Laguerre--Gaussian mother
wavelets family. In this work we present the inversion formula and Parsval
theorem for CCWT by virtue of the entangled state representation, which makes
the CCWT theory complete. A new orthogonal property of mother wavelet in
parameter space is revealed.Comment: 4 pages no figur
Nonlinear analysis of phased-locked loops with rapidly varying phase
The performance of command and telemetry systems, useful in deep-space communications, is frequently affected by the radio-frequency phase error which is introduced at the point of reception by means of the carrier tracking loop. In low data rate communications, this phase error may vary rapidly over the duration of the signaling interval. In this paper such phase variation is characterized by a sinusoidal input phase, K sin (omega sub o t+, pi/6), which models a typical phase variation in communication over turbulent media. Conditions for synchronization stability and the acquisition behavior are examined by detailed computer study of the phase-plane trajectories for the second and third-order loops with perfect integrator. It is demonstrated that for the phase variation considered the third-order loop has no real advantage over the second-order loop. Finally, it is shown that nonzero initial conditions may result in large steady-state phase error
Long-term Variability Properties and Periodicity Analysis for Blazars
In this paper, the compiled long-term optical and infrared measurements of
some blazars are used to analyze the variation properties and the optical data
are used to search for periodicity evidence in the lightcurve by means of the
Jurkevich technique and the discrete correlation function (DCF) method.
Following periods are found: 4.52-year for 3C 66A; 1.56 and 2.95 years for AO
0235+164;
14.4, 18.6 years for PKS 0735+178; 17.85 and 24.7 years for PKS 0754+100;
5.53 and 11.75 for OJ 287. 4.45, and 6.89 years for PKS 1215; 9 and 14.84 years
for PKS 1219+285;
2.0, 13.5 and 22.5 for 3C273; 7.1 year for 3C279;
6.07 for PKS 1308+326; 3.0 and 16.5 years for PKS 1418+546;
2.0 and 9.35 years for PKS 1514-241; 18.18 for PKS 1807+698;
4.16 and 7.0 for 2155-304; 14 and 20 years for BL Lacertae. Some explanations
have been discussed.Comment: 10 pages, 2 table, no figure, a proceeding paper for Pacific Rim
Conference on Stellar Astrophysics, Aug. 1999, HongKong, Chin
Energy average formula of photon gas rederived by using the generalized Hermann-Feynman theorem
By virtue of the generalized Hermann-Feynmam theorem and the method of
characteristics we rederive energy average formula of photon gas, this is
another useful application of the theorem.Comment: 2 page
- …
