398 research outputs found

    Self-(in)compatibility inheritance and allele-specific marker development in yellow mustard (Sinapis alba)

    Get PDF
    Yellow mustard (Sinapis alba) has a sporophytic self-incompatibility reproduction system. Genetically stable self-incompatible (SI) and self-compatible (SC) inbred lines have recently been developed in this crop. Understanding the S haplotype of different inbred lines and the inheritance of the self-(in)compatibility (SI/SC) trait is very important for breeding purposes. In this study, we used the S-locus gene-specific primers in Brassica rapa and Brassica oleracea to clone yellow mustard S-locus genes of SI lines Y514 and Y1130 and SC lines Y1499 and Y1501. The PCR amplification results and DNA sequences of the S-locus genes revealed that Y514 carried the class I S haplotype, while Y1130, Y1499, and Y1501 had the class II S haplotype. The results of our genetic studies indicated that self-incompatibility was dominant over self-compatibility and controlled by a one-gene locus in the two crosses of Y514 × Y1499 and Y1130 × Y1501. Of the five S-locus gene polymorphic primer pairs, Sal-SLGI and Sal-SRKI each generated one dominant marker for the SI phenotype of Y514; Sal-SLGII and Sal-SRKII produced dominant marker(s) for the SC phenotype of Y1501 and Y1499; Sal-SP11II generated one dominant marker for Y1130. These markers co-segregated with the SI/SC phenotype in the F(2) populations of the two crosses. In addition, co-dominant markers were developed by mixing the two polymorphic primer pairs specific for each parent in the multiplex PCR, which allowed zygosity to be determined in the F(2) populations. The SI/SC allele-specific markers have proven to be very useful for the selection of the desirable SC genotypes in our yellow mustard breeding program. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-013-9943-8) contains supplementary material, which is available to authorized users

    pH-responsive gas–water–solid interface for multiphase catalysis

    Get PDF
    © 2015 American Chemical Society. Despite their wide utility in laboratory synthesis and industrial fabrication, gas-water-solid multiphase catalysis reactions often suffer from low reaction efficiency because of the low solubility of gases in water. Using a surface-modification protocol, interface-active silica nanoparticles were synthesized. Such nanoparticles can assemble at the gas-water interface, stabilizing micrometer-sized gas bubbles in water, and disassemble by tuning of the aqueous phase pH. The ability to stabilize gas microbubbles can be finely tuned through variation of the surface-modification protocol. As proof of this concept, Pd and Au were deposited on these silica nanoparticles, leading to interface-active catalysts for aqueous hydrogenation and oxidation, respectively. With such catalysts, conventional gas-water-solid multiphase reactions can be transformed to H 2 or O 2 microbubble reaction systems. The resultant microbubble reaction systems exhibit significant catalysis efficiency enhancement effects compared with conventional multiphase reactions. The significant improvement is attributed to the pronounced increase in reaction interface area that allows for the direct contact of gas, water, and solid phases. At the end of reaction, the microbubbles can be removed from the reaction systems through changing the pH, allowing product separation and catalyst recycling. Interestingly, the alcohol oxidation activation energy for the microbubble systems is much lower than that for the conventional multiphase reaction, also indicating that the developed microbubble system may be a valuable platform to design innovative multiphase catalysis reactions

    Electrochemical Sensor for o-Nitrophenol Based on β

    Get PDF
    An electrochemical sensor for the quantification of o-nitrophenol (o-NP) has been developed based on the β-cyclodextrin functionalized graphene nanosheets modified glassy carbon electrode (CD-GNs/GCE). The results indicated that CD-GNs showed good electrochemical behavior to the redox of o-NP which is attributed to the combination of the excellent properties of graphene and cyclodextrin. The peak currents possess a linear relationship with the concentration of o-NP in the range of 5–400 μM. The detection limit of o-NP reached to 0.3 μM on the basis of the signal-to-noise characteristics (S/N=3). The peak potentials for the reversible redox waves are not affected by other nitrophenol isomers (m, p-NP), illustrating good selectivity. Furthermore, the developed electrochemical sensor exhibited good stability and reproducibility for the detection of o-NP and could be used to determine o-NP in real water sample

    Hydrothermal Synthesis of SBA-15 Using Sodium Silicate Derived from Coal Gangue

    Get PDF
    Well-ordered SBA-15 was prepared with a hydrothermal route by sodium silicate derived from coal gangue. The as-prepared sample was analyzed by SAXRD, BET, TEM, and SEM, respectively. The results indicate that at a low hydrothermal temperature of 100∘C the well-ordered mesoporous SBA-15 could be synthesized. The surface area, pore volume, and pore size of the sample are 552 m2/g, 0.54 cm3/g, and 7.0 nm, respectively. It is suggested that coal gangue could be used in obtaining an Si source to prepare mesoporous materials, such as SBA-15

    Study on Thermal Insulation Zeolite by Coal Fly Ash

    Get PDF
    This paper takes the coal fly ash as the material and makes zeolite with low thermal conductivity under a two-step synthesis for the purpose of thermal insulation. It studies main factors affecting zeolite such as the different concentration of NaOH, the solidliquid ratio, the silica-alumina ratio, and the crystallization temperature. The optimal conditions were obtained that the NaOH concentration was 3 mol/L, the solid-liquid ratio was 10 : 1, the silica-alumina ratio was 2, and the crystallization temperature was 12 ∘ C. Zeolites have multiple pores and skeletal structures under SEM observation. The mean particle size was 2.78 um of concentrated distribution. The pore volume was 0.148 m 3 /g measured by BET analysis, the specific surface was 118.6 m 2 /g, and the thermal conductivity was 0.153 W/(m⋅K). Zeolite was proved to be a qualified insulation material which can be used in thermal insulation coating as a new material of energy conservation

    Modification of waste coal gangue and its application in the removal of Mn2+ from aqueous solution

    Full text link
    We developed a new calcination method to convert coal gangue (CG), a common waste generated from coal production process, into a modified form, which could be used as an adsorbent to remove Mn2+ from aqueous solution. Sodium tetraborate (Na2B4O7·10H2O) was added into the CG calcination process as an additive, and the concentrations of Na2B4O7·10H2O were optimized along with the calcination temperature to obtain the best adsorbent capacity of modified coal gangue (MCG). We applied multiple analytical methods such as scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and Brunauer–Emmett–Teller analysis to characterize the MCG. The results showed it had a smaller particle size and a larger specific surface area and pore volume after modification. It also indicated that the phase of CG transformed from kaolinite to metakaolinite after calcination. Moreover, a new substance was generated with two new peaks at 1,632 cm−1 and 799 cm−1. The Mn2+ absorption capacity of MCG was evaluated using a series of experiments with different adsorbent doses, pH values and initial Mn2+ concentrations during the adsorption process. We found that Mn2+ adsorbent capacity of MCG increased by more than seven-fold compared to that of CG. The Langmuir isotherm model and the pseudo-second-order kinetic model provided the best fit to the adsorption processes.</jats:p

    Solubility of Li2CO3 in Na-K-Li-Cl brines from 20 to 90 degrees C

    No full text
    The solubility of Li2CO3 in Na-K-Li-Cl brines was measured by isothermal dissolution method within the temperature range of 20 to 90 degrees C. It was found the solubility of Li2CO3 in all systems investigated decreased with increasing temperature. In NaCl and KCl solutions, the solubility of Li2CO3 initially increased to a maximum value and then decreased gradually with increasing solution concentration. However, the solubility of Li2CO3 in LiCl solutions decreased with increasing LiCl concentration due to the common ion effect of added Li+. New Pitzer activity coefficient model parameters for the Li+-CO32- ion pair were obtained by using experimental solubility data of Li2CO3 in pure water, and a new chemical model was built with the aid of Aspen Plus platform. The new model was shown to successfully predict the solubility of Li2CO3 in NaCl, KCl, LiCl and mixed NaCl-KCl solutions. Moreover, the new model could aid in analyzing the separation of lithium and magnesium in brines. (c) 2013 Elsevier Ltd. All rights reserved
    corecore